Cationic and anionic vacancies on the NiO(100) surface: DFT+U and hybrid functional density functional theory calculations

2007 ◽  
Vol 127 (17) ◽  
pp. 174711 ◽  
Author(s):  
Anna Maria Ferrari ◽  
Cesare Pisani ◽  
Fabrizio Cinquini ◽  
Livia Giordano ◽  
Gianfranco Pacchioni
2019 ◽  
Author(s):  
Rachel Garrick ◽  
Amir Natan ◽  
Tim Gould ◽  
Leeor Kronik

p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; line-height: 18.0px; font: 15.8px Helvetica; color: #000000; -webkit-text-stroke: #000000; background-color: #ffffff} span.s1 {font-kerning: none} span.s2 {font-kerning: none; color: #000000} <p>Hybrid functionals have proven to be of immense practical value in density functional theory calculations. While they are often thought to be a heuristic construct, it has been established that this is in fact not the case. Here, we present a rigorous and formally exact generalized Kohn-Sham (GKS) density functional theory of hybrid functionals, in which exact remainder exchange-correlation potentials combine with a fraction of Fock exchange to produce the correct ground state density. Specifically, we generalize the well-known adiabatic con- nection theorem to the case of exact hybrid functional theory and use it to provide a rigorous distinction between multiplicative exchange and correlation components. We examine the exact theory by inverting reference electron densities to obtain exact GKS potentials for hybrid functionals, showing that an equivalent description of the many-electron problem is obtained with any arbitrary global fraction of Fock exchange. We establish the dependence of these exact components on the fraction of Fock exchange and use the observed trends to shed new light on the results of approximate hybrid functional calculations.</p>


2020 ◽  
Author(s):  
Rachel Garrick ◽  
Amir Natan ◽  
Tim Gould ◽  
Leeor Kronik

Hybrid functionals have proven to be of immense practical value in density functional theory calculations. While they are often thought to be a heuristic construct, it has been established that this is in fact not the case. Here, we present a rigorous and formally exact analysis of generalized Kohn-Sham (GKS) density functional theory of hybrid functionals, in which exact remainder exchange-correlation potentials combine with a fraction of Fock exchange to produce the correct ground state density. First, we extend formal GKS theory by proving a generalized adiabatic connection theorem. We then use this extension to derive two different definitions for a rigorous distinction between multiplicative exchange and correlation components - one new and one previously postulated. We examine their density-scaling behavior and discuss their similarities and differences. We then present a new algorithm for obtaining exact GKS potentials by inversion of accurate reference electron densities and employ this algorithm to obtain exact potentials for simple atoms and ions. We establish that an equivalent description of the many-electron problem is indeed obtained with any arbitrary global fraction of Fock exchange and we rationalize the Fock-fraction dependence of the computed remainder exchange-correlation potentials in terms of the new formal theory. Finally, we use the exact theoretical framework and numerical results to shed light on the exchange-correlation potential used in approximate hybrid functional calculations and to assess the consequences of different choices of fractional exchange.<br><br>


2010 ◽  
Vol 09 (supp01) ◽  
pp. 201-217
Author(s):  
ZHI-HUI ZHANG ◽  
TAO GAO ◽  
XIAO-FENG TIAN ◽  
NA HE

Density functional theory (DFT) calculations employed at two levels, B3LYP/6-31G+(d) and B3P86/6-31G+(d), are reported for the geometry, enthalpy, and free energy of reaction of a number of dithiobenzoate reversible addition fragmentation transfer (RAFT) reagents ( S=C(Ph)S–R , S=C(Z)S–CH2Ph ). Based on these theoretical data, the effectiveness of these RAFT reagents is analyzed. The conclusions, especially obtained at B3LYP/6-31G+(d) level, are in good agreement with the experimental results. Our calculations suggest that the dithiobenzoate ( S=C(Z)S–CH2Ph ), where Z is OC6H5 or N(alkyl)2 , is a poor RAFT reagent. Contrarily, the compound S=C(Ph)S–R , where R is C(Me)2Ph or C(Me)2CN , is a highly efficient RAFT reagent. Our results reveal the utility of the theoretical calculations of physical magnitudes for the rationalization of judging the effectiveness of RAFT reagents and demonstrated that DFT is a good method to calculate these data. In addition, our results on the enthalpies and Gibbs free energies of formation for the R radicals are calculated with the same method. These data are important for the design of logical and economical chemical process. Finally, the B3LYP hybrid functional is employed to predict the values of thermodynamic magnitudes for several new ithiobenzoates. Those results need to be verified by future experimental measurements or theoretical calculations.


2020 ◽  
Author(s):  
Rachel Garrick ◽  
Amir Natan ◽  
Tim Gould ◽  
Leeor Kronik

Hybrid functionals have proven to be of immense practical value in density functional theory calculations. While they are often thought to be a heuristic construct, it has been established that this is in fact not the case. Here, we present a rigorous and formally exact analysis of generalized Kohn-Sham (GKS) density functional theory of hybrid functionals, in which exact remainder exchange-correlation potentials combine with a fraction of Fock exchange to produce the correct ground state density. First, we extend formal GKS theory by proving a generalized adiabatic connection theorem. We then use this extension to derive two different definitions for a rigorous distinction between multiplicative exchange and correlation components - one new and one previously postulated. We examine their density-scaling behavior and discuss their similarities and differences. We then present a new algorithm for obtaining exact GKS potentials by inversion of accurate reference electron densities and employ this algorithm to obtain exact potentials for simple atoms and ions. We establish that an equivalent description of the many-electron problem is indeed obtained with any arbitrary global fraction of Fock exchange and we rationalize the Fock-fraction dependence of the computed remainder exchange-correlation potentials in terms of the new formal theory. Finally, we use the exact theoretical framework and numerical results to shed light on the exchange-correlation potential used in approximate hybrid functional calculations and to assess the consequences of different choices of fractional exchange.<br><br>


Sign in / Sign up

Export Citation Format

Share Document