scholarly journals Central-Upwind Scheme on Triangular Grids for the Saint-Venant System of Shallow Water Equations

Author(s):  
Steve Bryson ◽  
Yekaterina Epshteyn ◽  
Alexander Kurganov ◽  
Guergana Petrova ◽  
Theodore E. Simos ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Sudi Mungkasi

This paper presents a numerical entropy production (NEP) scheme for two-dimensional shallow water equations on unstructured triangular grids. We implement NEP as the error indicator for adaptive mesh refinement or coarsening in solving the shallow water equations using a finite volume method. Numerical simulations show that NEP is successful to be a refinement/coarsening indicator in the adaptive mesh finite volume method, as the method refines the mesh or grids around nonsmooth regions and coarsens them around smooth regions.


2014 ◽  
Vol 16 (5) ◽  
pp. 1323-1354 ◽  
Author(s):  
Manuel Jesús Castro Diaz ◽  
Yuanzhen Cheng ◽  
Alina Chertock ◽  
Alexander Kurganov

AbstractIn this paper, we develop and study numerical methods for the two-mode shallow water equations recently proposed in [S. STECHMANN, A. MAJDA, and B. KHOUIDER, Theor. Comput. Fluid Dynamics, 22 (2008), pp. 407-432]. Designing a reliable numerical method for this system is a challenging task due to its conditional hyperbolicity and the presence of nonconservative terms. We present several numerical approaches—two operator splitting methods (based on either Roe-type upwind or central-upwind scheme), a central-upwind scheme and a path-conservative central-upwind scheme—and test their performance in a number of numerical experiments. The obtained results demonstrate that a careful numerical treatment of nonconservative terms is crucial for designing a robust and highly accurate numerical method.


2016 ◽  
Vol 126 ◽  
pp. 25-40 ◽  
Author(s):  
Hamidreza Shirkhani ◽  
Abdolmajid Mohammadian ◽  
Ousmane Seidou ◽  
Alexander Kurganov

Sign in / Sign up

Export Citation Format

Share Document