dynamical processes
Recently Published Documents


TOTAL DOCUMENTS

604
(FIVE YEARS 78)

H-INDEX

44
(FIVE YEARS 6)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 216
Author(s):  
Danuta Kruk ◽  
Mariusz Jancelewicz ◽  
Adam Klimaszyk ◽  
Roksana Markiewicz ◽  
Zbigniew Fojud ◽  
...  

1H and 19F spin-lattice relaxation experiments have been performed for a series of ionic liquids sharing the same anion: bis(trifluoromethanesulfonyl)imide but including cations of different alkyl chain lengths: butyltriethylammonium, triethyloctylammonium, dodecyltriethylammo-nium and hexadecyltriethylammonium. The studies have been carried out in the temperature range from 383 to 108 K at the resonance frequency of 200 MHz (for 1H). A quantitative analysis of the relaxation data has revealed two dynamical processes for both kinds of ions. The dynamics have been successfully modeled in terms of the Arrhenius law. The timescales of the dynamical processes and their temperature evolution have been discussed in detail, depending on the structure of the cation.


2021 ◽  
Author(s):  
Renaud Lambiotte ◽  
Michael T. Schaub

Complex networks are typically not homogeneous, as they tend to display an array of structures at different scales. A feature that has attracted a lot of research is their modular organisation, i.e., networks may often be considered as being composed of certain building blocks, or modules. In this Element, the authors discuss a number of ways in which this idea of modularity can be conceptualised, focusing specifically on the interplay between modular network structure and dynamics taking place on a network. They discuss, in particular, how modular structure and symmetries may impact on network dynamics and, vice versa, how observations of such dynamics may be used to infer the modular structure. They also revisit several other notions of modularity that have been proposed for complex networks and show how these can be related to and interpreted from the point of view of dynamical processes on networks.


2021 ◽  
Author(s):  
Alexander P Browning ◽  
Niloufar Ansari ◽  
Christopher Drovandi ◽  
Angus Johnston ◽  
Matthew J Simpson ◽  
...  

Biological heterogeneity is a primary contributor to the variation observed in experiments that probe dynamical processes, such as internalisation. Given that internalisation is the primary means by which cells absorb drugs, viruses and other material, quantifying cell-to-cell variability in internalisation is of high biological interest. Yet, it is common for studies of internalisation to neglect cell-to-cell variability. We develop a simple mathematical model of internalisation that captures the dynamical behaviour, cell-to-cell variation, and extrinsic noise introduced by flow cytometry. We calibrate our model through a novel distribution-matching approximate Bayesian computation algorithm to flow cytometry data collected from an experiment that probes the internalisation of antibody by transferrin receptors in C1R cells. Our model reproduces experimental observations, identifies cell-to-cell variability in the internalisation and recycling rates, and, importantly, provides information relating to inferential uncertainty. Given that our approach is agnostic to sample size and signal-to-noise ratio, our modelling framework is broadly applicable to identify biological variability in single-cell data from experiments that probe a range of dynamical processes.


2021 ◽  
Author(s):  
Anastasiya Kondrat'eva

A new view of the position of oak in the successional processes of oak forests of the forest-steppe is presented, based on the population strategy of this species and the peculiarities of the conditions for the development of pregenerative stages. The preferable conditions for natural regeneration of oak in forest communities and their relationship with the dynamics of deciduous communities of the forest-steppe are analyzed.


2021 ◽  
Vol 18 (183) ◽  
Author(s):  
Venetia Voutsa ◽  
Demian Battaglia ◽  
Louise J. Bracken ◽  
Andrea Brovelli ◽  
Julia Costescu ◽  
...  

The relationship between network structure and dynamics is one of the most extensively investigated problems in the theory of complex systems of recent years. Understanding this relationship is of relevance to a range of disciplines—from neuroscience to geomorphology. A major strategy of investigating this relationship is the quantitative comparison of a representation of network architecture (structural connectivity, SC) with a (network) representation of the dynamics (functional connectivity, FC). Here, we show that one can distinguish two classes of functional connectivity—one based on simultaneous activity (co-activity) of nodes, the other based on sequential activity of nodes. We delineate these two classes in different categories of dynamical processes—excitations, regular and chaotic oscillators—and provide examples for SC/FC correlations of both classes in each of these models. We expand the theoretical view of the SC/FC relationships, with conceptual instances of the SC and the two classes of FC for various application scenarios in geomorphology, ecology, systems biology, neuroscience and socio-ecological systems. Seeing the organisation of dynamical processes in a network either as governed by co-activity or by sequential activity allows us to bring some order in the myriad of observations relating structure and function of complex networks.


2021 ◽  
pp. 105897
Author(s):  
Thando Ndarana ◽  
Tsholanang S. Rammopo ◽  
Chris J.C. Reason ◽  
Mary-Jane Bopape ◽  
Francois Engelbrecht ◽  
...  

Author(s):  
Mathieu Dumberry ◽  
Mioara Mandea

Abstract Fluid motion within the Earth’s liquid outer core leads to internal mass redistribution. This occurs through the advection of density anomalies within the volume of the liquid core and by deformation of the solid boundaries of the mantle and inner core which feature density contrasts. It also occurs through torques acting on the inner core reorienting its non-spherical shape. These in situ mass changes lead to global gravity variations, and global deformations (inducing additional gravity variations) occur in order to maintain the mechanical equilibrium of the whole Earth. Changes in Earth’s rotation vector (and thus of the global centrifugal potential) induced by core flows are an additional source of global deformations and associated gravity changes originating from core dynamics. Here, we review how each of these different core processes operates, how gravity changes and ground deformations from each could be reconstructed, as well as ways to estimate their amplitudes. Based on our current understanding of core dynamics, we show that, at spherical harmonic degree 2, core processes contribute to gravity variations and ground deformations that are approximately a factor 10 smaller than those observed and caused by dynamical processes within the fluid layers at the Earth’s surface. The larger the harmonic degree, the smaller is the contribution from the core. Extracting a signal of core origin requires the accurate removal of all contributions from surface processes, which remains a challenge. Article Highlights Dynamical processes in Earth's fluid core lead to global gravity variations and surface ground deformations We review how these processes operate, how signals of core origin can be reconstructed and estimate their amplitudes Core signals are a factor 10 smaller than the observed signals; extracting a signal of core origin remains a challenge


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5625
Author(s):  
Krzysztof Zarzycki ◽  
Maciej Ławryńczuk

This work thoroughly compares the efficiency of Long Short-Term Memory Networks (LSTMs) and Gated Recurrent Unit (GRU) neural networks as models of the dynamical processes used in Model Predictive Control (MPC). Two simulated industrial processes were considered: a polymerisation reactor and a neutralisation (pH) process. First, MPC prediction equations for both types of models were derived. Next, the efficiency of the LSTM and GRU models was compared for a number of model configurations. The influence of the order of dynamics and the number of neurons on the model accuracy was analysed. Finally, the efficiency of the considered models when used in MPC was assessed. The influence of the model structure on different control quality indicators and the calculation time was discussed. It was found that the GRU network, although it had a lower number of parameters than the LSTM one, may be successfully used in MPC without any significant deterioration of control quality.


2021 ◽  
Author(s):  
Patricio Velasquez ◽  
Martina Messmer ◽  
Christoph C. Raible

Abstract. In this study, we investigate the sensitivity of the glacial Alpine hydro-climate to northern hemispheric and local ice-sheet changes. Bridging the scale gap by using a chain of global and regional climate models, we perform sensitivity simulations of up to 2 km horizontal resolution over the Alps for the Last Glacial Maximum (LGM) and the Marine Isotope Stage 4 (MIS4). In winter, we find wetter conditions in the southern part of the Alps during LGM compared to present day, to which dynamical processes, i.e., changes in the wind speed and direction, substantially contribute. During summer, we find the expected drier conditions in most of the Alpine region during LGM, as thermodynamics suggests drier conditions under lower temperatures. The MIS4 climate shows enhanced winter precipitation compared to the LGM, which is explain by its warmer climate compared to the LGM – thus, again explained by thermodynamics. The sensitivity simulations of the northern hemispheric ice-sheet changes show that an increase of the ice-sheet thickness leads to a significant intensification of glacial Alpine hydro-climate conditions, which is mainly explained by dynamical processes. Changing only the Fennoscandian ice sheet is less influential on the Alpine precipitation, whereas modifications in the local Alpine ice-sheet topography significantly alter the Alpine precipitation, in particular we find a reduction of summer precipitation at the southern face of the Alps when lowering the Alpine ice sheet. The findings demonstrate that the northern hemispheric and local ice-sheet topography play an important role in regulating the Alpine hydro-climate and thus permits a better understanding of the precipitation patterns in the complex Alpine terrain at glacial times.


Sign in / Sign up

Export Citation Format

Share Document