scholarly journals Adaptive Finite Volume Method for the Shallow Water Equations on Triangular Grids

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Sudi Mungkasi

This paper presents a numerical entropy production (NEP) scheme for two-dimensional shallow water equations on unstructured triangular grids. We implement NEP as the error indicator for adaptive mesh refinement or coarsening in solving the shallow water equations using a finite volume method. Numerical simulations show that NEP is successful to be a refinement/coarsening indicator in the adaptive mesh finite volume method, as the method refines the mesh or grids around nonsmooth regions and coarsens them around smooth regions.

2015 ◽  
Vol 123 ◽  
pp. 202-217 ◽  
Author(s):  
Stephen M. Guzik ◽  
Xinfeng Gao ◽  
Landon D. Owen ◽  
Peter McCorquodale ◽  
Phillip Colella

2014 ◽  
Vol 2014 ◽  
pp. 1-20 ◽  
Author(s):  
Sheng Bi ◽  
Jianzhong Zhou ◽  
Yi Liu ◽  
Lixiang Song

A second-order accurate, Godunov-type upwind finite volume method on dynamic refinement grids is developed in this paper for solving shallow-water equations. The advantage of this grid system is that no data structure is needed to store the neighbor information, since neighbors are directly specified by simple algebraic relationships. The key ingredient of the scheme is the use of the prebalanced shallow-water equations together with a simple but effective method to track the wet/dry fronts. In addition, a second-order spatial accuracy in space and time is achieved using a two-step unsplit MUSCL-Hancock method and a weighted surface-depth gradient method (WSDM) which considers the local Froude number is proposed for water depths reconstruction. The friction terms are solved by a semi-implicit scheme that can effectively prevent computational instability from small depths and does not invert the direction of velocity components. Several benchmark tests and a dam-break flooding simulation over real topography cases are used for model testing and validation. Results show that the proposed model is accurate and robust and has advantages when it is applied to simulate flow with local complex topographic features or flow conditions and thus has bright prospects of field-scale application.


2006 ◽  
Vol 134 (9) ◽  
pp. 2515-2526 ◽  
Author(s):  
F. Xiao ◽  
X. D. Peng ◽  
X. S. Shen

Abstract This paper presents a novel finite-volume grid that uses not only the volume-integrated average (VIA) like the traditional finite-volume method, but also the surface-integrated average (SIA) as the model variables. The VIA and SIA are generically called “moments” in the context used here and are carried forward in time separately as the prognostic quantities. With the VIA defined in the control volume while the SIA is on the surface of the control volume, the discretization based on VIA and SIA leads to some new features in the numerical dispersions. A simple formulation using both VIA and SIA for shallow-water equations is presented. The numerical dispersion of the resulting grid, which is denoted as the “M grid,” is discussed with comparisons to the existing ones.


Sign in / Sign up

Export Citation Format

Share Document