scholarly journals Solving nonlinear problems of heat conduction in layered composites by the boundary element method

2016 ◽  
Author(s):  
L. F. Spevak ◽  
N. A. Babailov
Author(s):  
Keijo Ruotsalainen

AbstractRecently in several papers the boundary element method has been applied to non-linear problems. In this paper we extend the analysis to strongly nonlinear boundary value problems. We shall prove the convergence and the stability of the Galerkin method in Lp spaces. Optimal order error estimates in Lp space then follow. We use the theory of A-proper mappings and monotone operators to prove convergence of the method. We note that the analysis includes the u4 -nonlinearity, which is encountered in heat radiation problems.


Author(s):  
H Zhou ◽  
Y Zhang ◽  
J Wen ◽  
S Cui

The existing cooling simulations for injection moulding are mostly based on the boundary element method (BEM). In this paper, a fast BEM approach for mould cooling analysis is developed. The actual problem is decoupled into a one-dimensional transient heat conduction problem within the thin part and a cycle-averaged steady state three-dimensional heat conduction problem of the mould. The BEM is formulated for the solution of the mould heat transfer problem. A dynamic allocation strategy of integral points is proposed when using the Gaussian integral formula to generate the BEM matrix. Considering that the full and unsymmetrical influence matrix of the BEM may lead to great storage space and solution time, this matrix is transformed into a sparse matrix by two methods: the direct rounding method or the combination method. This approximated sparsification approach can reduce the storage memory and solution time significantly. For validation, six typical cases with different element numbers are presented. The results show that the error of the direct rounding method is too large while that of the combination method is acceptable.


Sign in / Sign up

Export Citation Format

Share Document