Dust ion acoustic solitary wave in weakly relativistic dusty plasma with non-thermal ions

2019 ◽  
Author(s):  
Archana Patidar ◽  
Prerana Sharma
2012 ◽  
Vol 19 (10) ◽  
pp. 103704 ◽  
Author(s):  
M. K. Deka ◽  
N. C. Adhikary ◽  
A. P. Misra ◽  
H. Bailung ◽  
Y. Nakamura

2016 ◽  
Vol 82 (1) ◽  
Author(s):  
Behrooz Malekolkalami ◽  
Amjad Alipanah

The Sagdeev potential method is employed to compute the width of the ion-acoustic solitary wave propagated in a dusty plasma containing three components (dust–ion–electron). The results indicate that the width is a continuous function over the allowable ranges of plasma parameters. The complexity of the resulting equations is an obstacle to the expression of the width function in an explicit form in terms of the parameters. Thus, computer algebra is needed to plot the graph of the width function versus the parameters, which helps us to understand the width changes as the parameters change.


2009 ◽  
Vol 75 (5) ◽  
pp. 593-607 ◽  
Author(s):  
SK. ANARUL ISLAM ◽  
A. BANDYOPADHYAY ◽  
K. P. DAS

AbstractA theoretical study of the first-order stability analysis of an ion–acoustic solitary wave, propagating obliquely to an external uniform static magnetic field, has been made in a plasma consisting of warm adiabatic ions and a superposition of two distinct populations of electrons, one due to Cairns et al. and the other being the well-known Maxwell–Boltzmann distributed electrons. The weakly nonlinear and the weakly dispersive ion–acoustic wave in this plasma system can be described by the Korteweg–de Vries–Zakharov–Kuznetsov (KdV-ZK) equation and different modified KdV-ZK equations depending on the values of different parameters of the system. The nonlinear term of the KdV-ZK equation and the different modified KdV-ZK equations is of the form [φ(1)]ν(∂φ(1)/∂ζ), where ν = 1, 2, 3, 4; φ(1) is the first-order perturbed quantity of the electrostatic potential φ. For ν = 1, we have the usual KdV-ZK equation. Three-dimensional stability analysis of the solitary wave solutions of the KdV-ZK and different modified KdV-ZK equations has been investigated by the small-k perturbation expansion method of Rowlands and Infeld. For ν = 1, 2, 3, the instability conditions and the growth rate of instabilities have been obtained correct to order k, where k is the wave number of a long-wavelength plane-wave perturbation. It is found that ion–acoustic solitary waves are stable at least at the lowest order of the wave number for ν = 4.


Sign in / Sign up

Export Citation Format

Share Document