Velocity Distribution
Recently Published Documents





2021 ◽  
Azad Hussain ◽  
Muhammad Arsaln ◽  
Ali Hassan ◽  
Aysha Rehman

Abstract This paper investigates time-dependent compressible steam laminar flow coupled with heat transfer in fluids in a squared cylinder. The present problem has been designed in COMSOL-Multiphysics. The laminar flow is selected keeping the Mac number low. The flow possesses a no-slip condition with the wall of geometry. The pressure kept on flow is 0 Pas and the temperature of the flow regime is 305.13. The flow is initiated with a velocity of 0.5m/s. The effects of time on velocity distribution and pressure distribution are described with the help of graphs. Different results like drag coefficient, lift coefficient, heat distributions are also discussed. The technique used to solve modeled problem is BDF.

Q. Li ◽  
J. Xia ◽  
M. Zhou ◽  
S. Deng ◽  
H. Zhang ◽  

Abstract Motivated by the observation that vortex flow structure was evident in the energy loss at the surcharged junction manhole due to changes of hydraulic and geometrical parameters, a physical model was used to calculate energy loss coefficients and investigate the relationship between flow structure and energy loss at the surcharged three-way junction manhole. The effects of the flow discharge ratio, the connected angle between two inflow pipes, the manhole geometry, and the downstream water depth on the energy loss were analyzed based on the quantified energy loss coefficients and the identified flow structure. Moreover, two empirical formulae for head loss coefficients were validated by the experimental data. Results indicate that the effect of flow discharge ratio and connected angle are significant, while the effect of downstream water depth is not obvious. With the increase of the lateral inflow discharge, the flow velocity distribution and vortex structure are both enhanced. It is also found that a circular manhole can reduce local energy loss when compared to a square manhole. In addition, the tested empirical formulae can reproduce the trend of total head loss coefficient.

Fluids ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 7
Stefano Savino ◽  
Carlo Nonino

Counter-flow double-layered microchannel heat sinks are very effective for thermal control of electronic components; however, they require rather complicated headers and flow maldistribution can also play a negative role. The cross-flow configuration allows a much simpler header design and the thermal performance becomes similar to that provided by the counter-flow arrangement if the velocity distribution in the microchannels is not uniform. The aim of this work is to show the possibility of achieving a favorable flow distribution in the microchannels of a cross-flow double-layered heat sink with an adequate header design and the aid of additional elements such as full or partial height baffles made of solid or porous materials. Turbulent RANS numerical simulations of the flow field in headers are carried out with the commercial code ANSYS Fluent. The flow in the microchannel layers is modeled as that in a porous material, whose properties are derived from pressure drop data obtained using an in-house FEM code. It is demonstrated that, with an appropriate baffle selection, inlet headers of cross-flow microchannel heat sinks yield velocity distributions very close to those that would allow optimal hotspot management in electronic devices.

Water ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 36
Jiyang Qi ◽  
Yue Qi ◽  
Qunyan Chen ◽  
Fei Yan

In this study, the drag reduction effect is studied for a cylinder with different V-groove depths on its surface using a k-ω/SST (Shear Stress Transport) turbulence model of computational fluid dynamics (CFD), while a particle image velocimetry (PIV) system is employed to analyze the wake characteristics for a smooth cylinder and a cylinder with different V-groove depths on its surface at different Reynolds numbers. The study focuses on the characteristics of the different V-groove depths on lift coefficient, drag coefficient, the velocity distribution of flow field, pressure coefficient, vortex shedding, and vortex structure. In comparison with a smooth cylinder, the lift coefficient and drag coefficient can be reduced for a cylinder with different V-groove depths on its surface, and the maximum reduction rates of lift coefficient and drag coefficient are about 34.4% and 16%, respectively. Otherwise, the vortex structure presents a complete symmetry for the smooth cylinder, however, the symmetry of the vortex structure becomes insignificant for the V-shaped groove structure with different depths. This is also an important reason for the drag reduction effect of a cylinder with a V-groove surface.

Machines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 6
Jianning Yin ◽  
Shanshan Yu ◽  
Shiwei Ge ◽  
Xinghua Liu ◽  
Chao Liu

Wind and solar energy are examples of clean energy that are widely developed and utilized in order to achieve the goal of carbon neutrality. Higher requirements for the safety and reliability of the power grid are put forward after they are connected to it. In the case of disconnectors, as the power system’s protection equipment, their arc interruption characteristics are closely tied to the safety and reliability of the power system. In addition, a disconnector is required to be able to break the DC arc in the photovoltaic power generation system. Therefore, this paper focuses on the arc evolution characteristics in disconnectors. A magnetohydrodynamics (MHD) model of disconnectors was built. In this model, not only are the coupling of the electromagnetic field and the airflow field considered, but also the characteristics of the external circuit. Therefore, not only can arc evolution characteristics be obtained through this simulation model, but the breaking performance will also be directly obtained. The temperature, pressure and velocity distribution are obtained to analyze the evolution process. The curve of current versus time is calculated to analyze the breaking performance. The evolution characteristics of AC and DC arcs in the disconnector are analyzed by calculation and comparison. This provides theoretical guidance for the optimal design of DC disconnectors through simulation analysis.

Zhixing Mei ◽  
Qiangwei Cai ◽  
Jing Ye ◽  
Yan Li ◽  
Bojing Zhu

Extreme ultraviolet (EUV) disturbances are ubiquitous during eruptive phenomena like solar flare and Coronal Mass Ejection (CME). In this work, we have performed a three-dimensional (3D) magnetohydrodynamic numerical simulation of CME with an analytic magnetic fluxrope (MFR) to study the complex velocity distribution associated with EUV disturbances. When the MFR erupts upward, a fast shock (FS) appears as a 3D dome, followed by outward moving plasma. In the center of the eruptive source region, an expanding CME bubble and a current sheet continuously grow, both of which are filled by inward moving plasma. At the flanks of the CME bubble, a complex velocity distribution forms because of the dynamical interaction between inward and outward plasma, leading to the formation of slow shock (SS) and velocity separatrix (VS). We note two types of vortices near the VS, not mentioned in the preceding EUV disturbance simulations. In first type of vortex, the plasma converges toward the vortex center, and in the second type, the plasma spreads out from the center. The forward modeling method has been used to create the synthetic SDO/AIA images, in which the eruptive MFR and the FS appear as bright structures. Furthermore, we also deduce the plasma velocity field by utilizing the Fourier local correlation tracking method on the synthetic images. However, we do not observe the VS, the SS, and the two types of vortices in this deduced velocity field.

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2288
Jie Kou ◽  
Zhaoming Jiang ◽  
Yiying Cong

An innovative axial hydrocyclone separator was designed in which a guide vane was installed to replace a conventional tangential inlet, potentially aggravating inlet turbulence. The characteristics of velocity distribution, concentration distribution, and pressure distribution inside the separator were obtained through the numerical simulation of the turbulent flow of oil and water. The results showed that the flow field presented good symmetry, which eliminated the eccentric turbulence phenomenon in the conventional hydrocyclone separators and was beneficial for the oil–water separation.

Matthew Klimek

Abstract We propose the study of the time substructure of jets, motivated by the fact that the next generation of detectors at particle colliders will resolve the time scale over which jet constituents arrive. This effect is directly related to the fragmentation and hadronization process, which transforms partons into massive hadrons with a distribution of velocities. We review the basic predictions for the velocity distribution of jet hadrons, and suggest an application for this information in the context of boosted object tagging. By noting that the velocity distribution is determined by the properties of the color string which ends on the parton that initiates the jet, we observe that jets originating from boosted color singlets, such as Standard Model electroweak bosons, will exhibit velocity distributions that are boosted relative to QCD jets of similar jet energy. We find that by performing a simple cut on the corresponding distribution of charged hadron arrival times at the detector, we can discriminate against QCD jets that would otherwise give a false positive under a traditional spatial substructure based boosted object tagger.

Kang Liu ◽  
Wenhui Li ◽  
Peiyan Ye ◽  
Zhiming Zhang ◽  
Qiaoling Ji ◽  

Force-spinning is a popular way to fabricate various fine fibers such as polymer and metal nanofibers, which are being widely employed in medical and industrial manufacture. The spinneret is the key of the device for spinning fibers, and the physical performance and morphology of the spun nanofibers are largely determined by its structure parameters. In this article, the effect of spinneret parameters on the outlet velocity is explored and the spinneret parameters are also optimized to obtain the maximum outlet velocity. The mathematical model of the solution flow in four areas is established at first, and the relationship between outlet velocity and structure parameters is acquired. This model can directly reflect the flow velocity of the solution in each area. Then, the optimal parameters of outlet diameter, bending angle, and curvature radius are obtained combined with the gray wolf algorithm (GWA). It is found that a curved-tube nozzle with a bending angle of 9.1°, nozzle diameter of 0.6 mm, and curvature radius of 10 mm can obtain the maximum outlet velocity and better velocity distribution. Subsequently, the simulation is utilized to analyze and compare the velocity situation of different parameters. Finally, the fiber of 5 wt% PEO solution is manufactured by a straight-tube nozzle and optimized bent-tube nozzle in the laboratory, and the morphology and diameter distribution were observed using a scanning electron microscope (SEM). The results showed that the outlet velocity was dramatically improved after the bent-tube parameters were optimized by GWA, and nanofibers of better surface quality could be obtained using optimized bent-tube nozzles.

2021 ◽  
Zhiyong Song ◽  
Pengrui Zhu ◽  
Lianzhi Yang ◽  
Zhaohui Liu ◽  
Hua Li ◽  

Abstract BackgroundAtherosclerosis is an important cause of cardiovascular disease. The wall shear stress (WSS) is one of the key factors of plaque formation and dislodgement. Currently, WSS estimation is based on measurement of the blood velocity gradient. However, due to the lack of flow field measurements in carotid stenosis vessels, the two distribution forms (parabolic and non-parabolic) commonly considered in numerical simulations could cause WSS estimates to differ by more than 40%, which could seriously affect the accuracy of mechanical analysis. MethodsThis study was the first to apply 3D printing technology to create an experimental model of real-structure carotid arteries. Microparticle image velocimetry (micro-PIV) was adopted to comprehensively measure blood velocity field data at the stenosis location, providing experimental validation of numerical simulation (Fluent; finite volume method) results. Then, the flow field was simulated at a normal human heart rate (45-120 beats per minute). ResultsThis study revealed that when blood flowed across the carotid artery stenosis location, the velocity distribution was not parabolic but rather a plateau-shaped distribution, with a similar flow velocity in the central area (more than 65% of the total flow path). The WSS values calculated based on a parabolic velocity distribution and the maximum velocity were nearly 60% lower.ConclusionThis study provides a reliable method for WSS determination to better understand the vascular stenosis location and facilitate flow and shear force field research. In the future, it is necessary to carry out in-depth research on the relationship between the plaque shape, flow field distribution and WSS, and amendments to the calculated WSS for clinical stenosis should be proposed.

Sign in / Sign up

Export Citation Format

Share Document