scholarly journals Microbubble dynamics in a viscous compressible liquid subject to ultrasound

2022 ◽  
Vol 34 (1) ◽  
pp. 012105
Author(s):  
Qianxi Wang ◽  
Wenke Liu ◽  
Callan Corbett ◽  
Warren R. Smith
Author(s):  
Joachim Holzfuss

Based on the theory of F. Gilmore ( Gilmore 1952 The growth or collapse of a spherical bubble in a viscous compressible liquid ) for radial oscillations of a bubble in a compressible medium, the sound emission of bubbles in water driven by high-amplitude ultrasound is calculated. The model is augmented to include expressions for a variable polytropic exponent, hardcore and water vapour. Radiated acoustic energies are calculated within a quasi-acoustic approximation and also a shock wave model. Isoenergy lines are shown for driving frequencies of 23.5 kHz and 1 MHz. Together with calculations of stability against surface wave oscillations leading to fragmentation, the physically relevant parameter space for the bubble radii is found. Its upper limit is around 6 μm for the lower frequency driving and 1–3 μm for the higher. The radiated acoustic energy of a single bubble driven in the kilohertz range is calculated to be of the order of 100 nJ per driving period; a bubble driven in the megahertz range reaches two orders of magnitude less. The results for the first have applications in sonoluminescence research. Megahertz frequencies are widely used in wafer cleaning, where radiated sound may be implicated as responsible for the damage of nanometre-sized structures.


2019 ◽  
Vol 84 (4) ◽  
pp. 696-711 ◽  
Author(s):  
Qianxi Wang ◽  
WenKe Liu ◽  
David M Leppinen ◽  
A D Walmsley

Abstract This paper is concerned with microbubble dynamics in a viscous compressible liquid near a rigid boundary. The compressible effects are modelled using the weakly compressible theory of Wang & Blake (2010, Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J. Fluid Mech., 730, 245–272), since the Mach number associated is small. The viscous effects are approximated using the viscous potential flow theory of Joseph & Wang (2004, The dissipation approximation and viscous potential flow. J. Fluid Mech., 505, 365–377), because the flow field is characterized as being an irrotational flow in the bulk volume but with a thin viscous boundary layer at the bubble surface. Consequently, the phenomenon is modelled using the boundary integral method, in which the compressible and viscous effects are incorporated into the model through including corresponding additional terms in the far field condition and the dynamic boundary condition at the bubble surface, respectively. The numerical results are shown in good agreement with the Keller–Miksis equation, experiments and computations based on the Navier–Stokes equations. The bubble oscillation, topological transform, jet development and penetration through the bubble and the energy of the bubble system are simulated and analysed in terms of the compressible and viscous effects.


1972 ◽  
Vol 94 (4) ◽  
pp. 811-816 ◽  
Author(s):  
R. P. DeArmond ◽  
W. T. Rouleau

The problem of steady-state, small amplitude, periodic wave propagation in a viscous, compressible liquid contained in an infinitely long, elastic tube is solved for the complex propagation constants of the two lowest modes of motion. One mode has a speed of propagation and decay constant characteristic of acoustic waves propagating in a liquid; the other mode corresponds to acoustic waves propagating in an elastic tube. The behavior of these two modes is investigated as a function of frequency, viscosity, and tube rigidity. A third mode of motion corresponding to edge loads on the tube is also investigated. This mode, unlike the other two modes, is characterized by a cut-off frequency above which the propagation distance is infinite and below which it is finite.


Sign in / Sign up

Export Citation Format

Share Document