A Theory of Illusory Lightness and Transparency in Monocular and Binocular Images: The Role of Contour Junctions

Perception ◽  
1997 ◽  
Vol 26 (4) ◽  
pp. 419-453 ◽  
Author(s):  
Barton L Anderson

A theory of illusory transparency and lightness is described for monocular and binocular images containing X-, T- and I-contour junctions. This theory asserts that the geometric and luminance relationships of contour junctions induce illusory transparency and lightness percepts by causing a phenomenal scission of a homogenous luminance into multiple contributions. Specifically, it is argued that a discontinuous change in contrast along aligned contours that preserve contrast polarity induces a scission of the lower contrast region into a near-transparent surface or an illumination change, and a more distant surface that continues behind this near layer. This scission is assumed to cause changes in perceived lightness and/or surface opacity. Discontinuous changes in contrast along contours also are assumed to induce end-cut illusory contours that run roughly perpendicular to the inducing orientation of the contour, both monocularly and binocularly. Binocular illusory contours are shown to be caused by the presence of unmatchable contour terminators. It is argued that the presented theory can provide a unified account of a variety of monocular and binocular illusions that induce uniform transformations in perceived lightness, including neon-color spreading, the Munker – White illusion, Benary's illusion, and illusory monocular and binocular transparency.

Author(s):  
Stephen Grossberg

The distinction between seeing and knowing, and why our brains even bother to see, are discussed using vivid perceptual examples, including image features without visible qualia that can nonetheless be consciously recognized, The work of Helmholtz and Kanizsa exemplify these issues, including examples of the paradoxical facts that “all boundaries are invisible”, and that brighter objects look closer. Why we do not see the big holes in, and occluders of, our retinas that block light from reaching our photoreceptors is explained, leading to the realization that essentially all percepts are visual illusions. Why they often look real is also explained. The computationally complementary properties of boundary completion and surface filling-in are introduced and their unifying explanatory power is illustrated, including that “all conscious qualia are surface percepts”. Neon color spreading provides a vivid example, as do self-luminous, glary, and glossy percepts. How brains embody general-purpose self-organizing architectures for solving modal problems, more general than AI algorithms, but less general than digital computers, is described. New concepts and mechanisms of such architectures are explained, including hierarchical resolution of uncertainty. Examples from the visual arts and technology are described to illustrate them, including paintings of Baer, Banksy, Bleckner, da Vinci, Gene Davis, Hawthorne, Hensche, Matisse, Monet, Olitski, Seurat, and Stella. Paintings by different artists and artistic schools instinctively emphasize some brain processes over others. These choices exemplify their artistic styles. The role of perspective, T-junctions, and end gaps are used to explain how 2D pictures can induce percepts of 3D scenes.


Perception ◽  
1992 ◽  
Vol 21 (3) ◽  
pp. 313-324 ◽  
Author(s):  
Hiroshige Takeichi ◽  
Shinsuke Shimojo ◽  
Takeo Watanabe

Two aspects of neon color spreading, local color spreading (neon flank) and illusory contour, were investigated by dichoptic viewing. Neon flank was not observed under appropriate dichoptic stimulation, suggesting that input to the process for local color spreading is based on monocular configuration. However, illusory contours were formed according to the interocularly combined configuration rather than according to each monocular configuration, suggesting that input to the process responsible for illusory contours should be ocularly-nonselective and binocular, rather than monocular. The possibilities of artifacts such as those arising from interocular rivalry were appropriately eliminated, and thus, it is tentatively concluded that the process underlying local color spreading is monocularly driven, whereas the process underlying illusory contours is binocularly driven. Furthermore, a new demonstration is presented that indicates that interocularly-induced illusory contours ‘capture’ and extend the monocularly-induced local color spreading, resulting in global color spreading (neon color spreading). These results support our hypotheses that neon color spreading involves two separable processes in the early visual processing, the feature detection process (for local color spreading) and the illusory contour process, and that these two processes interact with each other at later stages of cortical processing. The relation of local color spreading and illusory contours to surface separation is also discussed.


Perception ◽  
10.1068/p3410 ◽  
2002 ◽  
Vol 31 (9) ◽  
pp. 1073-1092 ◽  
Author(s):  
Daniel Wollschläger ◽  
Antonio M Rodriguez ◽  
Donald D Hoffman

We analyze the properties of a dynamic color-spreading display created by adding narrow colored flanks to rigidly moving black lines where these lines fall in the interior of a stationary virtual disk. This recently introduced display (Wollschläger et al, 2001 Perception30 1423–1426) induces the perception of a colored transparent disk bounded by strong illusory contours. It provides a link between the classical neon-color-spreading effect and edge-induced color spreading as discussed by Pinna et al (2001 Vision Research41 2669–2676). We performed three experiments to quantitatively study (i) the enhancing influence of apparent motion; (ii) the degrading effect of small spatial discontinuities (gaps) between lines and flanks; and (iii) the spatial extent of the color spreading. We interpret the results as due to varying degrees of objecthood of the dynamically specified disk: increased objecthood leads to increased surface visibility in both contour and color.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Wilian Gatti Junior ◽  
Alceu Salles Camargo Junior ◽  
Paul Varella

PurposeThis study examines the role of hybrid products employed in companies' innovation strategy within three American industrial sectors: tires, typewriters and photography cameras.Design/methodology/approachThe authors selected historical cases that enabled us to present the role of hybrid products in periods of discontinuous change. Different sources are employed in this study: papers, books, cases, working papers, videos, manuals and product catalogues, companies' annual reports, company websites, advertising, collectors' websites and museums, in addition to press and other media reports.FindingsThe authors’ historical case analysis points to two forms of hybrid products. (1) Exploitation-hybrid, which incorporates significant elements from the existing dominant design and aims at extending the revenue-generating opportunities of the existing products. (2) Exploration-hybrid, which works as an offensive strategy, as the firm uses the exploration-hybrid to promote a gradual and controlled adoption of new technology by reducing risks and the cost of change for the customer.Research limitations/implicationsThe authors’ proposed definitions strengthen the idea that hybrids are not only a reflection of organizational inertia (exploitation-hybrid). Hybrids can also mean a more proactive stance in the strategy of developing and adopting new technology (exploration-hybrid).Originality/valueThis study acknowledged hybrid products as a learning instrument that materialized the organizational ambidexterity, favoring at the same time exploitation, generally attributed to organizational inertia, and the exploration of new segments of customers or the use of new technologies.


Perception ◽  
1997 ◽  
Vol 26 (11) ◽  
pp. 1353-1366 ◽  
Author(s):  
Paola Bressan ◽  
Ennio Mingolla ◽  
Lothar Spillmann ◽  
Takeo Watanabe

Sign in / Sign up

Export Citation Format

Share Document