feature detection
Recently Published Documents


TOTAL DOCUMENTS

1651
(FIVE YEARS 435)

H-INDEX

56
(FIVE YEARS 9)

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Mohammad Manthouri ◽  
Zhila Aghajari ◽  
Sheida Safary

Infection diseases are among the top global issues with negative impacts on health, economy, and society as a whole. One of the most effective ways to detect these diseases is done by analysing the microscopic images of blood cells. Artificial intelligence (AI) techniques are now widely used to detect these blood cells and explore their structures. In recent years, deep learning architectures have been utilized as they are powerful tools for big data analysis. In this work, we are presenting a deep neural network for processing of microscopic images of blood cells. Processing these images is particularly important as white blood cells and their structures are being used to diagnose different diseases. In this research, we design and implement a reliable processing system for blood samples and classify five different types of white blood cells in microscopic images. We use the Gram-Schmidt algorithm for segmentation purposes. For the classification of different types of white blood cells, we combine Scale-Invariant Feature Transform (SIFT) feature detection technique with a deep convolutional neural network. To evaluate our work, we tested our method on LISC and WBCis databases. We achieved 95.84% and 97.33% accuracy of segmentation for these data sets, respectively. Our work illustrates that deep learning models can be promising in designing and developing a reliable system for microscopic image processing.


Author(s):  
Rachael C Tighe ◽  
Jonathon Hill ◽  
Tom Vosper ◽  
Cody Taylor ◽  
Tairongo Tuhiwai

Abstract Thermographic inspection provides opportunity to tailor non-destructive evaluation to specific applications. The paper discusses the opportunities this presents through consideration of adhesive bonds between composites, such as those joining structural members and outer skins, where access is restricted to a single side. To date, literature focusses on the development of either an experimental procedure or data processing approach. This research aims to demonstrate the importance of tailoring both of these aspects to an application to obtain improved defect detection and robust quantification. Firstly, the heating stimulus is optimised to maximise the thermal contrast created between defect and non-defect regions using a development panel. Traditional flash heating is compared to longer square pulse heating, using a developed shutter system, compromising between experimental duration and heat input. A pulse duration of 4 seconds using two 130 W halogen bulbs was found double the detection depth from 1 mm to 2 mm, revealing all defects in the development panel. Temporal processing was maintained for all data using thermal signal reconstruction. Spatial defect detection routines were then implemented to provide robust defect/feature detection. Spatial defect detection encompassed a combination of image enhancement and edge detection algorithms. A two-stage kernel filter/binary enhancement method followed by the use of Canny edge detection was found most robust, providing a sizing error of 1.8 % on the development panel data. This process was then implemented on adhesive bonds with simulated bond line defects. The simulated defects are based on target detection threshold of 10 mm diameter void found at 1- 2 mm depth. All simulated void defects were detected in the representative bonded joint down to the minimum diameter tested of 5 mm. By considering the tailoring of multiple aspects of the inspection routine independently, an overall optimised approach for the application of interest has been defined.


Computing ◽  
2022 ◽  
Author(s):  
Ruiping Wang ◽  
Liangcai Zeng ◽  
Shiqian Wu ◽  
Kelvin K. L. Wong

Author(s):  
Xianfei Zhou ◽  
Hongfang Cheng ◽  
Fulong Chen

Cross-border payment optimization technology based on block chain has become a hot spot in the industry. The traditional method mainly includes the block feature detection method, the fuzzy access method, the adaptive scheduling method, which perform related feature extraction and quantitative regression analysis on the collected distributed network connection access data, and combine the fuzzy clustering method to optimize the data access design, and realize the group detection and identification of data in the block chain. However, the traditional method has a large computational overhead for distributed network connection access, and the packet detection capability is not good. This paper constructs a statistical sequence model of adaptive connection access data to extract the descriptive statistical features of the distributed network block chain adaptive connection access data similarity. The performance of the strategy retrieval efficiency in the experiment is tested based on the strategy management method. The experiment performs matching query tests on the test sets of different query sizes. The different parameters for error rate and search delay test are set to evaluate the impact of different parameters on retrieval performance. The calculation method of single delay is the total delay or the total number of matches. The optimization effect is mainly measured by the retrieval delay of the strategy in the strategy management contract; the smaller the delay, the higher the execution efficiency, and the better the retrieval optimization effect.


2022 ◽  
Vol 118 ◽  
pp. 102961
Author(s):  
Alessandro Bucci ◽  
Leonardo Zacchini ◽  
Matteo Franchi ◽  
Alessandro Ridolfi ◽  
Benedetto Allotta

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Di Wang ◽  
Hongying Zhang ◽  
Yanhua Shao

The precise evaluation of camera position and orientation is a momentous procedure of most machine vision tasks, especially visual localization. Aiming at the shortcomings of local features of dealing with changing scenes and the problem of realizing a robust end-to-end network that worked from feature detection to matching, an invariant local feature matching method for changing scene image pairs is proposed, which is a network that integrates feature detection, descriptor constitution, and feature matching. In the feature point detection and descriptor construction stage, joint training is carried out based on a neural network. In the feature point extraction and descriptor construction stage, joint training is carried out based on a neural network. To obtain local features with solid robustness to viewpoint and illumination changes, the Vector of Locally Aggregated Descriptors based on Neural Network (NetVLAD) module is introduced to compute the degree of correlation of description vectors from one image to another counterpart. Then, to enhance the relationship between relevant local features of image pairs, the attentional graph neural network (AGNN) is introduced, and the Sinkhorn algorithm is used to match them; finally, the local feature matching results between image pairs are output. The experimental results show that, compared with the existed algorithms, the proposed method enhances the robustness of local features of varying sights, performs better in terms of homography estimation, matching precision, and recall, and when meeting the requirements of the visual localization system to the environment, the end-to-end network tasks can be realized.


Author(s):  
Ji Yuan

Aiming at the problem that the number of data bytes in the traditional automatic update technology of GIS platform is small, a method of automatic update of GIS platform graph model based on machine learning is studied. Firstly, the data of the GIS platform model is convolved by the iso-linear feature detection operator in the automatic updating technology of the GIS platform model, and the calculated data of the GIS platform model is expressed as spatial data. A reasonable updating criterion is established, the spatial relationship of GSI data is reconstructed by the measure of updating criterion, the data vector of GIS platform model updated within the updating time range is calculated, and the regional data elements in the space are constantly changed to complete the data updating of GIS platform model. The experimental results show that compared with the automatic updating method of GIS platform model, the proposed method can update more data bytes with the same number of data bytes.


Sign in / Sign up

Export Citation Format

Share Document