Complexes containing unsaturated medium rings: The crystal and molecular structures of two rhodium(I) complexes

1978 ◽  
Vol 31 (4) ◽  
pp. 781 ◽  
Author(s):  
R Mason ◽  
GR Scollary

The crystal and molecular structures of two rhodium(I) complexes with long-chain alkyne- or alkene-α,ω-diyldiphosphines have been determined by single-crystal X-ray diffraction techniques. RhCl(CO){But2P(CH2)4C≡C(CH2)4PBut2} crystallizes in the orthorhombic space group Pna21 with a 21.991 (2), b 11.915(1), c 11.890(1) Ǻ and Z 4. The structure was refined by least-squares methods to a conventional R factor of 0.097 for 1768 independent reflections (Mo Kα diffraction data). The rhodium ion is in a square-planar coordination geometry with trans-phosphorus atoms; the unsaturated (alkynyl) group is not bonded to the rhodium. Crystals of RhCl{But2P(CH2)2CH=CH(CH2)2- PBut2} are monoclinic, space group P21/c, a 20.783(12), b 8.580(4), c 14.799(9) Ǻ, β 100.70(2)°, Z 4. The structure analysis has converged to R 0.069 for 1417 reflections (Mo Kα diffractometry); the coordination geometry of the rhodium is again planar with the ethylenic group occupying a single bonding site. The effect of ring size on the rhodium-phosphorus bond lengths is discussed.

1992 ◽  
Vol 47 (3) ◽  
pp. 305-309 ◽  
Author(s):  
Anja Edelmann ◽  
Sally Brooker ◽  
Norbert Bertel ◽  
Mathias Noltemeyer ◽  
Herbert W. Roesky ◽  
...  

Abstract The Molecular Structures of [2,4,6-(CF3)3C6H2S]2 (1) [2,4,6-Me3C6H2Te]2 and [2-Me2N-4,6-(CF3)2C6H2Te]2 (3) have been determined by X-ray diffraction. Crystal data: 1: orthorhombic, space group P212121, Z = 4, a = 822.3(2), b = 1029.2(2), c = 2526.6(5) pm (2343 observed independent reflexions, R = 0.042); 2: orthorhombic, space group Iba 2, Z = 8, a = 1546.5(2), b = 1578.4(2), c = 1483.9(1) pm (2051 observed independent reflexions, R = 0.030); 3: monoclinic, space group P 21/c, Z = 4, a = 1118.7(1), b = 1536.5(2), c = 1492.6(2) pm, β = 98.97(1)° (3033 observed independent reflexions, R = 0.025).


1988 ◽  
Vol 41 (3) ◽  
pp. 283 ◽  
Author(s):  
GB Robertson ◽  
PA Tucker

The structures of two crystalline modifications of mer -(Pme2Ph)3H-cis-Cl2IrIII, (1), have been determined from single-crystal X-ray diffraction data. Modification (A) is monoclinic, space group P21/c with a 12.635(1), b 30.605(3), c 14.992(2)Ǻ, β 110.01(2)° and Z = 8. Modification (B) is orthorhombic, space group Pbca with a 27.646(3), b 11.366(1), c 17.252(2)Ǻ and Z = 8. The structures were solved by conventional heavy atom techniques and refined by full-matrix least- squares analyses to conventional R values of 0.037 [(A), 8845 independent reflections] and 0.028 [(B), 5291 independent reflections]. Important bond lengths [Ǻ] are Ir -P(trans to Cl ) 2.249(1) av. (A) and 2.234(1) (B), Ir -P(trans to PMe2Ph) 2.339(2) av. (A) and 2.344(1), 2.352(1) (B), Ir-Cl (trans to H) 2.492(2), 2.518(2) (A) and 2.503(1) (B) and Ir-Cl (trans to PMe2Ph)2.452(2) av. (A) and 2.449(1)(B). Differences in chemically equivalent metal- ligand bond lengths emphasize the importance of non-bonded contacts in determining those lengths.


1975 ◽  
Vol 53 (18) ◽  
pp. 2707-2713 ◽  
Author(s):  
Debbie Allen ◽  
Colin James Lyne Lock ◽  
Graham Turner ◽  
John Powell

The crystal and molecular structures of pentane-2,4-dionato-(2,3,5,6-tetrahapto-2,3-dicarbomethoxo[2.2.1]bicycloheptadienerhodium(I), Rh(C5H7O2)(C7H6(CO2CH3)2), have been measured by single crystal X-ray diffraction. The orange crystals are monoclinic, space group P21/c, Z = 4, a = 9.245(4), b = 9.003(4), c = 21.680(15) Å, β = 113.41(5)°. The calculated and observed densities are 1.645 and 1.642(5) respectively. Intensity data were collected on a Syntex [Formula: see text] diffractometer and a full matrix least squares refinement on 3010 observed reflections leads to a conventional R = 0.0660. The structure can be considered as a roughly square planar arrangement of ligands around the rhodium atom composed of two β-ketoenolate oxygen atoms (Rh—O, 2.037(5) and 2.025(5) Å ) and the centers of the two ethylenic groups. The Rh—C distances for the olefin group attached to the two carbomethoxo groups, 2.117(8), 2.108(8) Å, appear to be slightly larger than those for the other olefinic group, 2.087(7), 2.082(6), and the corresponding C=C distances of 1.375(10) and 1.410(9) Å are different at the 95% confidence level.


Author(s):  
G. D. Nigam ◽  
G. Mattern ◽  
R. Fröhlich

AbstractThe crystal and molecular structures of 1-(m-nitrophenyl)-2,2-dicarboethoxy-3-phenyl-pyrrolidin-5-one (I) and 1-(p-chlorophenyl)-2,2-dicarboethoxy-3-phenyl-pyrrolidin-5-one (II) have been determined by X-ray diffraction methods. (I) crystallizes in the monoclinic space group


Author(s):  
G. Dewald ◽  
M. Hanack ◽  
E.-M. Peters ◽  
L. Walz

AbstractThe crystal and molecular structures of dimorphic 10,10′-(1,4-phenylene-dimethylidene)-bis-9,10-H-anthracenone (1) have been determined using X-ray diffraction data. The compound crystallizes either in the monoclinic space groupSince all non-hydrogen atoms are of pure


2000 ◽  
Vol 55 (11) ◽  
pp. 1005-1010 ◽  
Author(s):  
Ulrich Jürgen Bildmann ◽  
Martin Winkler ◽  
Gerhard Müller Fachbereich

The crystal and molecular structures of the phosphinomethyl-substituted lithium cyclopentadienides [Li(tmeda)][R2PCMe2C5H4], R = Ph (1), Me (2) (tmeda = N,N,N',N'-tetramethylethylenediamine) were determined as their tmeda adducts on the basis of low temperature single crystal X-ray diffraction. (Crystal data: 1: monoclinic, space group P21/n, a = 8.511(5), b = 11.936(2), c = 24.20(1) Å, β = 90.02(3)°, Z = 4.2: monoclinic, space group P21/n, a = 10.887(2), b = 13.326(2), c = 13.131(2) Å, β= 92.872(6)°, Z = 4). In both compounds lithium has a slightly distorted 17 coordination to the cyclopentadienide (Cp) ring. There are no interactions between lithium and the phosphine donors in the solid state as the phosphinomethyl substituents are oriented to the other side of the Cp ring for steric reasons. The isopropene-substituted lithium cyclopentadienide, which is formed as a by-product in the synthesis of phosphinomethyl cyclopentadienides containing a CMe2 bridge, was also structurally characterized as its tmeda adduct [Li(tmeda)][H2C=CMeC5H4] (3). (Crystal data: monoclinic, P21/c, a = 8.00(2), b = 16.701(2), c = 11.942(6) Å, β= 112.68(7)°, Z = 4). As in 1 and 2, lithium is η5 -coordinated to the Cp ring, and there is no interaction of the functional group (isopropene) with lithium.


1993 ◽  
Vol 71 (3) ◽  
pp. 358-363 ◽  
Author(s):  
Juan N. Fernández-G. ◽  
Raúl G. Enríquez ◽  
Amalia Tobón-Cervantes ◽  
Margarita I. Bernal-Uruchurtu ◽  
René Villena-I ◽  
...  

The crystal structures of N,N′-di(2-acetylcyclohexenyl)ethylenediamine (L1) and its copper(II) complex, which crystallizes with one solvent molecule of chloroform (Cu(L1-2H)•CHCl3), were determined. Crystallographic details are as follows: L1 is monoclinic, space group P21/c, with a = 8.280(2), b = 11.692(2), and c = 9.355(2) Å, β = 114.10(2)°, V = 826.7(3) Å3, Z = 2; ρc = 1.22 g cm−3, μ(Cu Kα) = 5.93 cm−1, with the final residual indices of R = 0.046 and Rw = 0.070 for 991 unique reflections. Cu(L1-2H)•CHCl3 is triclinic, space group[Formula: see text] with a = 11.121(3), b = 11.713(3), and c = 8.974(2) Å, α = 99.35(2)°, β = 110.83(2)°, γ = 82.33(2)°, V = 1074(1) Å3, Z = 2; ρc = 1.50 g cm−3, μ(Cu Kα) = 50.74 cm−1, with the final residual indices of R = 0.048 and Rw = 0.077 for 2369 unique reflections. The X-ray diffraction study shows that in the crystal state the ligand L1 is in the methylketonecyclohexanonenamine isomeric form. For the copper complex Cu(L1 2H)•CHC13, the geometry around the metal atom is distorted square planar, and the angle between the chelate ring planes in the complex is 15.1°. An NMR study shows that L1 in solution has the same structure as that observed in the solid state by X-ray diffraction.


1989 ◽  
Vol 44 (12) ◽  
pp. 1483-1487 ◽  
Author(s):  
Hans Georg Stammler ◽  
Johannes Weiss

(S4N3)2Se2Cl10, (S4N3)2Se2Cl6 and [(S4N3)SeCl5]n are formed by the reaction of S4N4, Se2Cl2, and SOCl2. The structures of the three compounds where determined by X-ray diffraction. The yellow crystals of (S4N3)2Se2Cl,10 are monoclinic, space group P21/a, a = 817.5(2) pm, b = 1790.4(5) pm, c = 843.1(6) pm, β = 104.31(4)°, Z = 2. The Se2Cl,102- anion consists of 2 Cl-bridged distorted octahedra. (S4N3)2Se2Cl6 forms red monoclinic crystals, space group P21/c, a = 1036.5(3) pm, b = 1376.5(5) pm, c = 1400.4(4) pm, β = 100.65(2)°, Ζ = 4. In the Se2Cl62- anion the Se atoms have a square planar environment. The yellow crystals of (S4N3)SeCl5 are orthorhombic, space group P212121, a = 734.2(3) pm, b = 989.4(4) pm, c = 1627.4(6) pm, Z = 4. In the SeCl5- anion the Se atom has an octahedral environment of chlorine atoms, thus forming a polymeric structure.


1982 ◽  
Vol 35 (7) ◽  
pp. 1311 ◽  
Author(s):  
MA Bennett ◽  
K Ho ◽  
JC Jeffery ◽  
GM Mclaughlin ◽  
GB Robertson

Crystal and molecular structures of the title compounds have been determined from three dimensional X-ray diffraction data recorded on a four-circle diffractometer. Crystals of the acetyl complex, trans-PtCl(COMe)(PMePh2)2,(1), are monoclinic, space group P2,1/c, with a 12.9709(5), b 11.1024(5), c 277535(9) Ǻ, β 94.75(1)° and Z 6. Crystals of the trifluoroacetyl complex, trans-PtCl(COCF3)- (PMePh2)2, (2), are monoclinic, space group P21/n (non-standard setting of P21c), with a 11.4246(7), b 15.5750(7), c 15.4200(8) Ǻ, β 90.54(1)° and Z 4. For (I), with Z 6, the unit cell contains one set of four equivalent molecules in the general equipoint and one set of two equivalent (disordered) molecules located at inversion centres. The four molecules in (2) comprise a single equivalent set in the general equipoint. Least-squares analyses converge with R 0.042 for (1) (5696 unique data) and R 0.025 for (2) (3933 unique data). Molecules of both complexes exhibit small deformations from planar towards tetrahedral platinum geometry; the acyl and coordination planes are approximately orthogonal. The phosphine substituents in (2) and in the 'general' molecules in (1) are approximately eclipsed, and approximately eclipse the Pt-C (acetyl) bonds. In the 'special' molecules in (1) the phosphines are constrained to adopt the mutually staggered conformation found in the alkyl analogues trans-PtClR(PMePhM2)2 (R = Me, CF3, C2F2). Important comparative lengths in (1) (general molecule) and in (2) (in square brackets) are: Pt-C 2.028(6) [1.960(4)] A, Pt-Cl 2.430(2) [2.390(1)] Ǻ, Pt-P 2.301(2), 2.297(2) [2.316(1), 2.321(1)] A, C-O 1.182(8) [1.210(5)] 8, and C C (acetyl) 1.488(10) [1.547(6)] A. The trifluoroacetyl ligand forms a shorter and presumably stronger bond with platinum, and exerts a larger cis- and a smaller trans-influence than the acyl ligand. The smaller trans-influence of the trifluoroacetyl ligand is consistent with the expectation from platinum-chlorine stretching frequencies (v(Pt-Cl)).


2005 ◽  
Vol 60 (9) ◽  
pp. 978-983 ◽  
Author(s):  
Sevim Hamamci ◽  
Veysel T. Yilmaz ◽  
William T. A. Harrison

Two new saccharinato-silver(I) (sac) complexes, [Ag(sac)(ampy)] (1), and [Ag2(sac)2(μ-aepy)2] (2), [ampy = 2-(aminomethyl)pyridine, aepy = 2-(2-aminoethyl)pyridine], have been prepared and characterized by elemental analysis, IR spectroscopy, thermal analysis and single crystal X-ray diffraction. Complexes 1 and 2 crystallize in the monoclinic space group P21/c and triclinic space group P1̄, respectively. The silver(I) ions in both complexes 1 and 2 exhibit a distorted T-shaped AgN3 coordination geometry. 1 consists of individual molecules connected into chains by N-H···O hydrogen bonds. There are two crystallographically distinct dimers in the unit cell of 2 and in each dimer, the aepy ligands act as a bridge between two silver(I) centers, resulting in short argentophilic contacts [Ag1···Ag1 = 3.0199(4) Å and Ag2···Ag2 = 2.9894(4) Å ]. Symmetry equivalent dimers of 2 are connected by N-H···O hydrogen bonds into chains, which are further linked by aromatic π(py)···π(py) stacking interactions into sheets.


Sign in / Sign up

Export Citation Format

Share Document