The thermal decompositions of 2-methyl-2-phenoxypropane

1981 ◽  
Vol 34 (2) ◽  
pp. 343 ◽  
Author(s):  
NJ Daly ◽  
SA Robertson ◽  
LP Steele

The thermal reactions of 2-methyl-2-phenoxypropane have been studied in gas phase over the range 600-670 K by quadrupole mass spectrometry and pressure studies. The reaction is shown to be a homogeneous first-order elimination of phenol and 2-methylpropene which is described by the Arrhenius equation k = 1014.10�0.12exp[(-210.46�1.36)/RT] s-1 Possible reaction mechanisms are considered and the reaction is found to be a unimolecular elimination rather than a radical chain process initiated by homolysis to phenoxy and 1,1-dimethylethyl radicals. Evidence for the rearrangement to 4-t-butylphenol previously proposed has been carefully sought and it is concluded that the process does not occur in the gas phase. The A-factor observed for the reaction is in good agreement with that calculated for the four-centred transition state proposed for elimination of 2-methylpropene from alkoxypropanes.

1968 ◽  
Vol 21 (7) ◽  
pp. 1711
Author(s):  
DA Kairaitis ◽  
VR Stimson

Hydrogen bromide catalyses the decomposition of methyl formate into carbon monoxide and methanol at 390-460�. The radical chain decomposition product, methane, is formed in only a small amount that is further reduced by the addition of inhibitor. The reaction is homogeneous and molecular, is first order in each reactant, and follows the Arrhenius equation: k2 = 1012.50exp(-32200/RT)sec-1 ml mole-1 It is not reversed by added methanol.


The uninhibited thermal decomposition of diethyl ether was studied from 560 to 620 °C and at pressures ranging from 15 to 320 mmHg . The order of the overall reaction was between 1 and 3/2, the order being greater the higher the pressure. Analytical and kinetic data provide strong evidence that there is a molecular split of diethyl ether into ethanol and ethylene. The reaction leading to acetaldehyde and ethane, on the other hand, is concluded to be almost entirely a free-radical chain process. A detailed chain mechanism is postulated, involving first-order initiation and the reaction between C 2 H 5 and CH 2 CH 2 OC 2 H 5 as the chain-ending step. This mechanism is shown to give a steady-state rate equation which leads to first-order kinetics at lower ether pressures and three-halves-order kinetics at higher ones. The kinetic results lead to activation energies which are in satisfactory agreement with values calculated on the basis of the elementary reactions.


1968 ◽  
Vol 21 (10) ◽  
pp. 2385 ◽  
Author(s):  
RL Johnson ◽  
VR Stimson

The gas-phase decomposition of 2,3-dimethylbutan-2-ol into 2,3-dimethylbut-1-ene, 2,3-dimethylbut-2-ene, and water, catalysed by hydrogen bromide at 303-400�, is described. The rate is first-order in each reactant and the Arrhenius equation k2 = 1011.88 exp(-26490/RT) sec-l ml mole-1 is followed. The olefins appear to be in their equilibrium proportions. The effects of substitutions in the alcohol at Cα and Cβ on the rate are discussed.


Sign in / Sign up

Export Citation Format

Share Document