Relationship between delayed embryonic development and metabolic factors and fat deposition in fruit bat Cynopterus sphinx

2007 ◽  
Vol 19 (5) ◽  
pp. 626 ◽  
Author(s):  
Arnab Banerjee ◽  
K.J. Meenakumari ◽  
Amitabh Krishna

The present study was undertaken in the fruit bat Cynopterus sphinx, which breeds twice in quick succession at Varanasi, India. Its gestation period varies significantly in the two successive pregnancies of the year owing to delayed embryonic development during the first (winter) pregnancy. The primary aim of the present study was to determine the role of metabolic factors in delayed embryonic development in the fruit bat C. sphinx. Variation in bodyweight, fat deposition, oxygen (O2) consumption rate, basal metabolic rate (BMR), body temperature (Tb) and hepatic succinate dehydrogenase (SDH) activity, along with circulating levels of thyroid hormones (tri-iodothyronine and thyroxine), were examined as metabolic factors during the two successive pregnancies in C. sphinx. The increase in bodyweight observed in November was due to accumulation of white adipose tissue in the posterior abdominal region. A significant decline in O2 consumption rate, BMR, Tb and SDH activity was found in early winter in November–December, which coincides closely with the period of fat accumulation and with the period of delayed embryonic development in C. sphinx. A significantly higher O2 consumption rate, BMR, Tb and SDH activity was noted during the second pregnancy in, when embryonic development was relatively faster. Thyroid hormone levels were high during the period of embryonic delay compared with levels during the remaining months. The results of the present study suggest that the delayed embryonic development in C. sphinx during early winter may be due to a low O2 consumption rate, BMR, Tb and SDH activity in November–December. The energy saved by suppressing embryonic development in this species may be advantageous for fat accumulation. Increased thyroid hormone levels during the early winter period might facilitate fat accumulation in C. sphinx.


2004 ◽  
Vol 180 (1) ◽  
pp. 45-53 ◽  
Author(s):  
L Liu ◽  
TE Porter

Growth hormone cell differentiation normally occurs between day 14 and day 16 of chicken embryonic development. We reported previously that corticosterone (CORT) could induce somatotroph differentiation in vitro and in vivo and that thyroid hormones could act in combination with CORT to further augment the abundance of somatotrophs in vitro. The objective of the present study was to test our hypothesis that endogenous thyroid hormones regulate the abundance of somatotrophs during chicken embryonic development. Plasma samples were collected on embryonic day (e) 9-14. We found that plasma CORT and thyroid hormone levels increased progressively in mid-embryogenesis to e 13 or e 14, immediately before normal somatotroph differentiation. Administration of thyroxine (T4) and triiodothyronine (T3) into the albumen of fertile eggs on e 11 increased somatotroph proportions prematurely on e 13 in the developing chick embryos in vivo. Furthermore, administration of methimazole, the thyroid hormone synthesis inhibitor, on e 9 inhibited somatotroph differentiation in vivo, as assessed on e 14; this suppression was completely reversed by T3 replacement on e 11. Since we reported that T3 alone was ineffective in vitro, we interpret these findings to indicate that the effects of treatments in vivo were due to interactions with endogenous glucocorticoids. These results indicate that treatment with exogenous thyroid hormones can modulate somatotroph abundance and that endogenous thyroid hormone synthesis likely contributes to normal somatotroph differentiation.







Zoology ◽  
2005 ◽  
Vol 108 (2) ◽  
pp. 131-140 ◽  
Author(s):  
Karukayil J. Meenakumari ◽  
Amitabh Krishna


Zoology ◽  
2009 ◽  
Vol 112 (2) ◽  
pp. 151-159 ◽  
Author(s):  
Karukayil J. Meenakumari ◽  
Arnab Banerjee ◽  
Amitabh Krishna


2010 ◽  
Vol 168 (1) ◽  
pp. 36-45 ◽  
Author(s):  
A. Banerjee ◽  
K.J. Meenakumari ◽  
A. Krishna


Sign in / Sign up

Export Citation Format

Share Document