mrna expression
Recently Published Documents





2022 ◽  
Vol 12 (3) ◽  
pp. 647-652
Yang Zhang ◽  
Peng Sun ◽  
Shuying Han ◽  
Duojiao Fan

Mitochondrial autophagy and inflammatory response involves in diabetes. This study mainly explores the role of Silent Information Regulator (SIRT1) in pancreatic β-cells under high glucose conditions and related mechanism. Pancreatic β cells was cultured in a high-glucose environment with SRT1720 and EX527 respectively to define activation group and inhibition group followed by analysis of SIRT1, P-FOXO1, FOXO1, LC3, ATG5, PINK, Parkin, Mfn1, Mfn2, Fis1, IL-6, TNF-α, NLRP3 protein and mRNA expression by qRT-PCR, Western blot and fluorescent probe technology. Compared with control group, SIRT1 protein and mRNA expression in the high glucose group was significantly reduced. Activation group had highest protein and mRNA expression of SIRT1 P-FOXO1, FOXO1, Mfn1, Mfn2, Fis1, PINK, Parkin and mitochondrial membrane potential followed by blank group and inhibition group.SIRT1 secretion by pancreatic β-cells under high glucose environment is reduced. After activating SIRT1, mitochondrial autophagy decreased significantly and inflammatory response is significantly alleviated, indicating that SIRT1 might be used as a therapeutic target.

2022 ◽  
Vol 23 (1) ◽  
Jaeyeon Wee ◽  
Hyang Kim ◽  
Sang-Jin Shin ◽  
Taeyong Lee ◽  
Seung Yeol Lee

Abstract Background Organogenesis from tonsil-derived mesenchymal cells (TMSCs) has been reported, wherein tenogenic markers are expressed depending on the chemical stimulation during tenogenesis. However, there are insufficient studies on the mechanical strain stimulation for tenogenic cell differentiation of TMSCs, although these cells possess advantages as a cell source for generating tendinous tissue. The purpose of this study was to investigate the effects of mechanical strain and transforming growth factor-beta 3 (TGF-β3) on the tenogenic differentiation of TMSCs and evaluate the expression of tendon-related genes and extracellular matrix (ECM) components, such as collagen. Results mRNA expression of tenogenic genes was significantly higher when the mechanical strain was applied than under static conditions. Moreover, mRNA expression of tenogenic genes was significantly higher with TGF-β3 treatment than without. mRNA expression of osteogenic and chondrogenic genes was not significantly different among different mechanical strain intensities. In cells without TGF-β3 treatment, double-stranded DNA concentration decreased, while the amount of normalized collagen increased as the intensity of mechanical strain increased. Conclusions Mechanical strain and TGF-β3 have significant effects on TMSC differentiation into tenocytes. Mechanical strain stimulates the differentiation of TMSCs, particularly into tenocytes, and cell differentiation, rather than proliferation. However, a combination of these two did not have a synergistic effect on differentiation. In other words, mechanical loading did not stimulate the differentiation of TMSCs with TGF-β3 supplementation. The effect of mechanical loading with TGF-β3 treatment on TMSC differentiation can be manipulated according to the differentiation stage of TMSCs. Moreover, TMSCs have the potential to be used for cell banking, and compared to other mesenchymal stem cells, they can be procured from patients via less invasive procedures.

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 135
Panagiotis J. Vlachostergios ◽  
Athanasios Karathanasis ◽  
Vassilios Tzortzis

Background: Advanced prostate cancer (PC) may accumulate genomic alterations that hallmark lineage plasticity and transdifferentiation to a neuroendocrine (NE) phenotype. Fibroblast activation protein (FAP) is a key player in epithelial-to-mesenchymal transition (EMT). However, its clinical value and role in NE differentiation in advanced PC has not been fully investigated. Methods: Two hundred and eight patients from a multicenter, prospective cohort of patients with metastatic castration-resistant prostate cancer (CRPC) with available RNA sequencing data were analyzed for tumor FAP mRNA expression, and its association with overall survival (OS) and NE tumor features was investigated. Results: Twenty-one patients (10%) were found to have high FAP mRNA expression. Compared to the rest, this subset had a proportionally higher exposure to taxanes and AR signaling inhibitors (abiraterone or enzalutamide) and was characterized by active NE signaling, evidenced by high NEPC- and low AR-gene expression scores. These patients with high tumor mRNA FAP expression had a more aggressive clinical course and significantly shorter survival (12 months) compared to those without altered FAP expression (28 months, log-rank p = 0.016). Conclusions: FAP expression may serve as a valuable NE marker indicating a worse prognosis in patients with metastatic CRPC.

2022 ◽  
Vol 12 ◽  
Xiangbing Mao ◽  
Rui Sun ◽  
Qingxiang Wang ◽  
Daiwen Chen ◽  
Bing Yu ◽  

Inflammatory bowel disease (namely, colitis) severely impairs human health. Isoleucine is reported to regulate immune function (such as the production of immunoreactive substances). The aim of this study was to investigate whether l-isoleucine administration might alleviate dextran sulfate sodium (DSS)-induced colitis in rats. In the in vitro trial, IEC-18 cells were treated by 4 mmol/L l-isoleucine for 12 h, which relieved the decrease of cell viability that was induced by TNF-α (10 ng/ml) challenge for 24 h (P <0.05). Then, in the in vivo experiment, a total of 44 Wistar rats were allotted into 2 groups that were fed l-isoleucine-supplemented diet and control diet for 35 d. From 15 to 35 d, half of the rats in the 2 groups drank the 4% DSS-adding water. Average daily gain, average daily feed intake and feed conversion of rats were impaired by DSS challenge (P <0.05). Drinking the DSS-supplementing water also increased disease activity index (DAI) and serum urea nitrogen level (P <0.05), shortened colonic length (P <0.05), impaired colonic enterocyte apoptosis, cell cycle, and the ZO-1 mRNA expression (P <0.05), increased the ratio of CD11c-, CD64-, and CD169-positive cells in colon (P <0.05), and induced extensive ulcer, infiltration of inflammatory cells, and collagenous fiber hyperplasia in colon. However, dietary l-isoleucine supplementation attenuated the negative effect of DSS challenge on growth performance (P <0.05), DAI (P <0.05), colonic length and enterocyte apoptosis (P <0.05), and dysfunction of colonic histology, and downregulated the ratio of CD11c-, CD64-, and CD169-positive cells, pro-inflammation cytokines and the mRNA expression of TLR4, MyD88, and NF-κB in the colon of rats (P <0.05). These results suggest that supplementing l-isoleucine in diet improved the DSS-induced growth stunting and colonic damage in rats, which could be associated with the downregulation of inflammation via regulating TLR4/MyD88/NF-κB pathway in colon.

2022 ◽  
Vol 20 (1) ◽  
Suat Suphan Ersahin ◽  
Aynur Ersahin

Abstract Objective It is not known by which mechanism endometrial injury increases pregnancy rates. Leukaemia inhibitory factor (LIF) is a cytokine involved in wound healing and implantation. The aim of this study was to determine the change in endometrial LIF mRNA expression before and after mechanical injury during hysteroscopy. Methods Forty patients with a history of two or more unsuccessful implantations who decided to undergo hysteroscopy in the proliferative phase were divided into two equal groups: one with endometrial injury (scratching group) and the other with noninjury (control group). Endometrial sampling was conducted before injury on the patients in the scratching group, and then injury was performed with monopolar needle forceps. Only diagnostic hysteroscopy was performed on the patients in the control group. Endometrial tissues were collected using a Pipelle catheter between Days 20 and 23 of the mid-luteal phase of the next cycles in both the scratching and control groups. Endometrial LIF mRNA expression was evaluated with the use of reverse-transcription polymerase chain reactions. Results Relative changes in mRNA expression levels of the LIF gene in endometrial samples taken before and after injury were calculated using the 2-ΔΔCt method, and the fold changes obtained were compared between and within the groups. Compared with preinjury values, an 11.1-fold increase was found in postinjury LIF mRNA expression in patients with monopolar forceps injury (p < 0.001). There was a 3.9-fold significant increase in postinjury LIF mRNA levels compared with those in the control group (p < 0.02). Conclusions The fertility-promoting effect of hysteroscopy-guided mechanical endometrial injury may be mediated by LIF mRNA.

2022 ◽  
Vol 23 (2) ◽  
pp. 722
Erik Lidin ◽  
Mattias K. Sköld ◽  
Maria Angéria ◽  
Johan Davidsson ◽  
Mårten Risling

Hippocampal dysfunction contributes to multiple traumatic brain injury sequala. Female rodents’ outcome is superior to male which has been ascribed the neuroprotective sex hormones 17β-estradiol and progesterone. Cytochrome P450 1B1 (CYP1B1) is an oxidative enzyme influencing the neuroinflammatory response by creating inflammatory mediators and metabolizing neuroprotective 17β-estradiol and progesterone. In this study, we aimed to describe hippocampal CYP1B1 mRNA expression, protein presence of CYP1B1 and its key redox partner Cytochrome P450 reductase (CPR) in both sexes, as well as the effect of penetrating traumatic brain injury (pTBI). A total 64 adult Sprague Dawley rats divided by sex received pTBI or sham-surgery and were assigned survival times of 1-, 3-, 5- or 7 days. CYP1B1 mRNA was quantified using in-situ hybridization and immunohistochemistry performed to verify protein colocalization. CYP1B1 mRNA expression was present in all subregions but greatest in CA2 irrespective of sex, survival time or intervention. At 3-, 5- and 7 days post-injury, expression in CA2 was reduced in male rats subjected to pTBI compared to sham-surgery. Females subjected to pTBI instead exhibited increased expression in all CA subregions 3 days post-injury, the only time point expression in CA2 was greater in females than in males. Immunohistochemical analysis confirmed neuronal CYP1B1 protein in all hippocampal subregions, while CPR was limited to CA1 and CA2. CYP1B1 mRNA is constitutively expressed in both sexes. In response to pTBI, females displayed a more urgent but brief regulatory response than males. This indicates there may be sex-dependent differences in CYP1B1 activity, possibly influencing inflammation and neuroprotection in pTBI.

Wenxing Peng ◽  
Xiujin Shi ◽  
Yifan Wang ◽  
Huanyu Qiao ◽  
Yang Lin

Introduction: Voltage-gated sodium (Nav) channels encoded by SCNs are heteromeric protein complexes containing pore-forming α subunits together with non-pore-forming β subunits. Methods: To analyze the expression of SCNs in the samples of different types of breast cancer (BC) patients and the relationship between the expression of α and β subunits and the prognosis of in BC patients, the study investigated the roles of SCNs in the prognosis of BC using ONCOMINE, UALCAN, Kaplan-Meier Plotter, GEPIA, Metascape, LinkedOmics databases. The study analyzed significant changes of SCNs expression and prognosis in transcription level between BC and normal samples, and association of mRNA expression of distinct SCNs family members with prognosis in overall BC patients and HER2-positive/HER2-negative subgroups, respectively. Moreover, we predicted functions and pathways of the mutations in SCNs and their neighbor genes in BC patients by GO/KEGG and GSEA analysis. Results: The results showed that transcriptional and proteinic expressions of 9 SCNs were downregulated in patients with BC, including SCN1A~4A, 7A, 9A and SCN2B~4B. low expressions of 11 SCNs members were found to be significantly associated with poorer overall survival (OS) in BC patients (P<0.01), including SCN2A, 3A, 5A, 7A, 9A~11A and SCN1B~4B. Moreover, prognostic value of mRNA expression of SCNs could only be seen in HER2-negative BC patients when we performed subgroup analysis. Conclusions: These results indicated that SCNs could be prognostic biomarkers for survivals of BC patients. Some medicines that regulate SCNs might provide new targets for BC treatment.

Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 204
Rusan Catar ◽  
Lei Chen ◽  
Hongfan Zhao ◽  
Dashan Wu ◽  
Julian Kamhieh-Milz ◽  

Atherosclerotic artery disease is the major cause of death and an immense burden on healthcare systems worldwide. The formation of atherosclerotic plaques is promoted by high levels of low-density lipoproteins (LDL) in the blood, especially in the oxidized form. Circulating LDL is taken up by conventional and non-classical endothelial cell receptors and deposited in the vessel wall. The exact mechanism of LDL interaction with vascular endothelial cells is not fully understood. Moreover, it appears to depend on the type and location of the vessel affected and the receptor involved. Here, we analyze how native LDL (nLDL) and oxidized LDL (oxLDL) modulate the expression of their receptors—classical LDLR and alternative LOX-1—in endothelial cells derived from human umbilical artery (HUAECs), used as an example of a medium-sized vessel, which is typically affected by atherosclerosis. Exposure of HUAECs to nLDL resulted in moderate nLDL uptake and gradual increase in LDLR, but not LOX-1, expression over 24 h. Conversely, exposure of HUAECs to oxLDL, led to significant accumulation of oxLDL and rapid induction of LOX-1, but not LDLR, within 7 h. These activation processes were associated with phosphorylation of protein kinases ERK1/2 and p38, followed by activation of the transcription factor AP-1 and its binding to the promoters of the respective receptor genes. Both nLDL-induced LDLR mRNA expression and oxLDL-induced LOX-1 mRNA expression were abolished by blocking ERK1/2, p-38 or AP-1. In addition, oxLDL, but not nLDL, was capable of inducing LOX-1 through the NF-κB-controlled pathway. These observations indicate that in arterial endothelial cells nLDL and oxLDL signal mainly via LDLR and LOX-1 receptors, respectively, and engage ERK1/2 and p38 kinases, and AP-1, as well as NF-κB transcription factors to exert feed-forward regulation and increase the expression of these receptors, which may perpetuate endothelial dysfunction in atherosclerosis.

2022 ◽  
Vol 12 (1) ◽  
Jan Hojny ◽  
Romana Michalkova ◽  
Eva Krkavcova ◽  
Quang Hiep Bui ◽  
Michaela Bartu ◽  

AbstractHepatocyte nuclear factor-1-beta (HNF1B) is a transcription factor and putative biomarker of solid tumours. Recently, we have revealed a variety of HNF1B mRNA alternative splicing variants (ASVs) with unknown, but potentially regulatory, functions. The aim of our work was to quantify the most common variants and compare their expression in tumour and non-tumour tissues of the large intestine, prostate, and kidney. The HNF1B mRNA variants 3p, Δ7, Δ7–8, and Δ8 were expressed across all the analysed tissues in 28.2–33.5%, 1.5–2%, 0.8–1.7%, and 2.3–6.9% of overall HNF1B mRNA expression, respectively, and occurred individually or in combination. The quantitative changes of ASVs between tumour and non-tumour tissue were observed for the large intestine (3p, Δ7–8), prostate (3p), and kidney samples (Δ7). Decreased expression of the overall HNF1B mRNA in the large intestine and prostate cancer samples compared with the corresponding non-tumour samples was observed (p = 0.019 and p = 0.047, respectively). The decreased mRNA expression correlated with decreased protein expression in large intestine carcinomas (p < 0.001). The qualitative and quantitative pattern of the ASVs studied by droplet digital PCR was confirmed by next-generation sequencing, which suggests the significance of the NGS approach for further massive evaluation of the splicing patterns in a variety of genes.

Sign in / Sign up

Export Citation Format

Share Document