embryonic development
Recently Published Documents


TOTAL DOCUMENTS

7697
(FIVE YEARS 1902)

H-INDEX

142
(FIVE YEARS 26)

Author(s):  
Lilian de Paula Gonçalves Reis ◽  
Antonio Jesús Lora-Benítez ◽  
Ana Mª Molina-López ◽  
Rafael Mora-Medina ◽  
Nahúm Ayala-Soldado ◽  
...  

Bisphenol A (BPA) is a chemical substance commonly used in the manufacture of plastic products. Its inhalation or ingestion from particles in suspension, water, and/or polluted foods can trigger toxic effects related to endocrine disruption, resulting in hormonal, reproduction, and immunological alterations in humans and animals. The zebrafish (Danio rerio) is an ideal experimental model frequently used in toxicity studies. In order to assess the toxic effects of BPA on reproduction and embryonic development in one generation after parental exposure to it, a total of 80 zebrafish, males and females, divided into four groups in duplicate (n = 20) were exposed to BPA concentrations of 500, 50, and 5 µg L−1, along with a control group. The fish were kept in reproduction aquariums for 21 days. The embryos obtained in the crosses were incubated in a BPA-free medium and observed for signs of embryotoxicity. A histopathological study (under optical and electron microscopes) was performed of adult fish gonads. The embryos of reproducers exposed to BPA were those most frequently presenting signs of embryotoxicity, such as mortality and cardiac and musculoskeletal malformations. In the histopathological studies of adult individuals, alterations were found in ovocyte maturation and in spermatazoid formation in the groups exposed to the chemical. Those alterations were directly related to BPA action, affecting fertility in both sexes, as well as the viability of their offspring, proportionally to the BPA levels to which they were exposed, so that our results provide more information by associating toxic effects on the offspring and on the next generation.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 136
Author(s):  
Satya Srirama Karthik Divvela ◽  
Darius Saberi ◽  
Beate Brand-Saberi

Atoh8 belongs to a large superfamily of transcriptional regulators called basic helix-loop-helix (bHLH) proteins. bHLH proteins have been identified in a wide range of organisms from yeast to humans. The members of this special group of transcription factors were found to be involved not only in embryonic development but also in disease initiation and its progression. Given their importance in several fundamental processes, the translation, subcellular location and turnover of bHLH proteins is tightly regulated. Alterations in the expression of bHLH proteins have been associated with multiple diseases also in context with Atoh8 which seems to unfold its functions as both transcriptional activator and repressor. Like many other bHLH transcription factors, so far, Atoh8 has also been observed to be involved in both embryonic development and carcinogenesis where it mainly acts as tumor suppressor. This review summarizes our current understanding of Atoh8 structure, function and regulation and its complex and partially controversial involvement in development and disease.


2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiukun Wang ◽  
Guang Hu

AbstractStem cell-based embryo models present new opportunities to study early embryonic development. In a recent study, Kagawa et al. identified an approach to create human pluripotent stem cell-based blastoids that resemble the human blastocysts. These blastoids efficiently generated analogs of the EPI, TE, PrE lineages with transcriptomes highly similar to those found in vivo. Furthermore, the formation of these lineages followed the same sequence and pace of blastocyst development, and was also dependent on the same pathways required for lineage specification. Finally, the blastoids were capable of attaching to stimulated endometrial cells to mimic the process of implantation. While more comprehensive analysis is needed to confirm its validity and usefulness, this new blastoid system presents the latest development in the attempt to model early human embryogenesis in vitro.


Author(s):  
Carlos Garcia-Padilla ◽  
Angel Dueñas ◽  
Diego Franco ◽  
Virginio Garcia-Lopez ◽  
Amelia Aranega ◽  
...  

MicroRNAs have been explored in different organisms and are involved as molecular switches modulating cellular specification and differentiation during the embryonic development, including the cardiovascular system. In this study, we analyze the expression profiles of different microRNAs during early cardiac development. By using whole mount in situ hybridization in developing chick embryos, with microRNA-specific LNA probes, we carried out a detailed study of miR-23b, miR-130a, miR-106a, and miR-100 expression during early stages of embryogenesis (HH3 to HH17). We also correlated those findings with putative microRNA target genes by means of mirWalk and TargetScan analyses. Our results demonstrate a dynamic expression pattern in cardiac precursor cells from the primitive streak to the cardiac looping stages for miR-23b, miR-130a, and miR-106a. Additionally, miR-100 is later detectable during cardiac looping stages (HH15-17). Interestingly, the sinus venosus/inflow tract was shown to be the most representative cardiac area for the convergent expression of the four microRNAs. Through in silico analysis we revealed that distinct Hox family members are predicted to be targeted by the above microRNAs. We also identified expression of several Hox genes in the sinus venosus at stages HH11 and HH15. In addition, by means of gain-of-function experiments both in cardiomyoblasts and sinus venosus explants, we demonstrated the modulation of the different Hox clusters, Hoxa, Hoxb, Hoxc, and Hoxd genes, by these microRNAs. Furthermore, we correlated the negative modulation of several Hox genes, such as Hoxa3, Hoxa4, Hoxa5, Hoxc6, or Hoxd4. Finally, we demonstrated through a dual luciferase assay that Hoxa1 is targeted by miR-130a and Hoxa4 is targeted by both miR-23b and miR-106a, supporting a possible role of these microRNAs in Hox gene modulation during differentiation and compartmentalization of the posterior structures of the developing venous pole of the heart.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Llilians Calvo ◽  
Maria Birgaoanu ◽  
Tom Pettini ◽  
Matthew Ronshaugen ◽  
Sam Griffiths-Jones

AbstractParhyale hawaiensis has emerged as the crustacean model of choice due to its tractability, ease of imaging, sequenced genome, and development of CRISPR/Cas9 genome editing tools. However, transcriptomic datasets spanning embryonic development are lacking, and there is almost no annotation of non-protein-coding RNAs, including microRNAs. We have sequenced microRNAs, together with mRNAs and long non-coding RNAs, in Parhyale using paired size-selected RNA-seq libraries at seven time-points covering important transitions in embryonic development. Focussing on microRNAs, we annotate 175 loci in Parhyale, 88 of which have no known homologs. We use these data to annotate the microRNAome of 37 crustacean genomes, and suggest a core crustacean microRNA set of around 61 sequence families. We examine the dynamic expression of microRNAs and mRNAs during the maternal-zygotic transition. Our data suggest that zygotic genome activation occurs in two waves in Parhyale with microRNAs transcribed almost exclusively in the second wave. Contrary to findings in other arthropods, we do not predict a general role for microRNAs in clearing maternal transcripts. These data significantly expand the available transcriptomics resources for Parhyale, and facilitate its use as a model organism for the study of small RNAs in processes ranging from embryonic development to regeneration.


Author(s):  
Carlos Garcia-Padilla ◽  
Francisco Hernandez-Torres ◽  
Estefania Lozano-Velasco ◽  
Angel Dueñas ◽  
Maria del Mar Muñoz-Gallardo ◽  
...  

Bmp and Fgf signaling are widely involved in multiple aspects of embryonic development. More recently non coding RNAs, such as microRNAs have also been reported to play essential roles during embryonic development. We have previously demonstrated that microRNAs, i.e., miR-130, play an essential role modulating Bmp and Fgf signaling during early stages of cardiomyogenesis. More recently, we have also demonstrated that microRNAs are capable of modulating cell fate decision during proepicardial/septum transversum (PE/ST) development, since over-expression of miR-23 blocked while miR-125, miR-146, miR-223 and miR-195 enhanced PE/ST-derived cardiomyogenesis, respectively. Importantly, regulation of these microRNAs is distinct modulated by Bmp2 and Fgf2 administration in chicken. In this study, we aim to dissect the functional role of Bmp and Fgf signaling during mouse PE/ST development, their implication regulating post-transcriptional modulators such as microRNAs and their impact on lineage determination. Mouse PE/ST explants and epicardial/endocardial cell cultures were distinctly administrated Bmp and Fgf family members. qPCR analyses of distinct microRNAs, cardiomyogenic, fibrogenic differentiation markers as well as key elements directly epithelial to mesenchymal transition were evaluated. Our data demonstrate that neither Bmp2/Bmp4 nor Fgf2/Fgf8 signaling is capable of inducing cardiomyogenesis, fibrogenesis or inducing EMT in mouse PE/ST explants, yet deregulation of several microRNAs is observed, in contrast to previous findings in chicken PE/ST. RNAseq analyses in mouse PE/ST and embryonic epicardium identified novel Bmp and Fgf family members that might be involved in such cell fate differences, however, their implication on EMT induction and cardiomyogenic and/or fibrogenic differentiation is limited. Thus our data support the notion of species-specific differences regulating PE/ST cardiomyogenic lineage commitment.


2022 ◽  
Vol 15 (1) ◽  
Author(s):  
Qian Ren ◽  
Yong Rao

AbstractCoordinated development of neurons and glia is essential for the establishment of neuronal circuits during embryonic development. In the developing Drosophila visual system, photoreceptor (R cell) axons and wrapping glial (WG) membrane extend from the eye disc through the optic stalk into the optic lobe. Extensive studies have identified a number of genes that control the establishment of R-cell axonal projection pattern in the optic lobe. The molecular mechanisms directing the exit of R-cell axons and WG membrane from the eye disc, however, remain unknown. In this study, we show that integrins are required in R cells for the extension of R-cell axons and WG membrane from the eye disc into the optic stalk. Knockdown of integrins in R cells but not WG caused the stalling of both R-cell axons and WG membrane in the eye disc. Interfering with the function of Rhea (i.e. the Drosophila ortholog of vertebrate talin and a key player of integrin-mediated adhesion), caused an identical stalling phenotype. These results support a key role for integrins on R-cell axons in directing R-cell axons and WG membrane to exit the eye disc.


Sign in / Sign up

Export Citation Format

Share Document