139 TRICHOSTATIN A IMPROVED IN VITRO DEVELOPMENT OF PORCINE NUCLEAR TRANSFER EMBRYOS PRODUCED BY A NEW ACTIVATION METHOD

2011 ◽  
Vol 23 (1) ◽  
pp. 173
Author(s):  
L. C. Sui ◽  
W. Wang ◽  
Y. S. Li ◽  
Y. L. Zhang ◽  
S. F. Ji ◽  
...  

Recently, it has been reported that a new activation method, brief exposure to cycloheximide before electrical activation, could increase development rates and reduce cell death. In our study, we allocated reconstructed SCNT embryos into 3 groups: electrical activation followed by exposure to cycloheximide (10 μg mL–1) for 4 h (ELE+CHX); exposure to cycloheximide (10 μg mL–1) for 10 min followed by electrical activation (CHX+ELE); and electrical pulse treatment alone (ELE). We found the CHX+ELE (10 min) group had a similar blastocyst formation rate and total blastocyst number with the ELE+CHX (4 h) group, and both groups could increase in vitro development compared with the ELE group. Trichostatin A (TSA), an inhibitor of histone deacetylase, has been reported to potentially enhance cloning efficiency. We examine the effect of TSA on nuclear transfer embryos produced by the CHX+ELE activation method. The reconstructed embryos were treated with 50 nM TSA for 0 and 36 h. We found that 50 nM TSA for 36 h after activation had an increased blastocyst rate compared with the control (15.35 v. 8.84%; P < 0.05), but there was no difference in cleavage rate or in total blastocyst numbers. Our data demonstrate that TSA treatment could significantly improve pig nuclear transfer embryos produced by a new activation method. S.L.C., W.W. equal contribution; Corresponding author ZH. X.R., ZH. Y.H.; Supported by NSFC (30700574), 863 (2008AA101003).

2004 ◽  
Vol 16 (2) ◽  
pp. 154
Author(s):  
H.S. Park ◽  
M.Y. Lee ◽  
S.P. Hong ◽  
J.I. Jin ◽  
J.K. Park ◽  
...  

Recent techniques in somatic cell nuclear transfer (SCNT) have been widely used for animal research. In addition, SCNT techniques may allow for the rescue of endangered species. Despite efforts for wildlife preservation, however, some threatened or endangered wild animal species will likely become extinct. As a preliminary experiment of a series in wildlife research, we tried to identify an improved method for the production of more transferable NT embryos in goats. Mature donor animals of Korean native goats (20–25kg) were synchronized with a CIDR (type G; InterAg, New Zealand) vaginal implant for 10 days followed by a total of 8 twice daily injections of 70mg of FSH (Folltropine, London, Ontario, Canada) and 400IU of hCG (Chorulon, Intervet, Moxmeer, The Netherlands). Oocytes were then collected surgically by retograde oviduct flush or direct aspiration from ovarian follicles in vivo at 29–34h after hCG. Oocytes collected from follicles were matured in TCM-199 containing 10% FBS and hormones. Prepared ear skin cells from the goat were cultured in TCM-199 containing 10% FBS at 39°C, 5% CO2 in air, and confluent monolayers were obtained. Oocytes were enucleated and donor cells from serum starvation (0.5%) culture were fused through a single electric pulse (DC 2.36kvcm−1, 17μs), and then activated by a single electric pulse (AC 5vmm−1, 5s+DC 1.56kvcm−1, 30μs) or chemical treatment (5μgmL−1 ionomycin 5min−1, 1.9mM 6-DMAP/4h). Reconstructed oocytes were cultured in M16 medium with 10% goat serum (GS) for 6–7 days. Data were analyzed by chi-square test. In in vitro development, significantly (P&lt;0.05) more oocytes were cleaved (24/30, 80.0%) and developed (7/24, 29.2%) to morula or blastocyst stage, respectively, in NT oocytes activated by Iono + DMAP compared to electric stimulated oocytes (2/21, 40.0%; 0/2, 0%). There was a significant difference in in vitro development of NT embryos by the method of oocyte collection. Cleavage rate was higher (P&lt;0.05) in NT embryos from in vivo oocytes (23/28, 82.1%) than in in vitro matured oocytes (19/35, 54.3%), and further development to morula or blastocyst was also significantly (P&lt;0.05%) higher in NT embryos from in vivo oocytes (7/23, 30.4%) than in NT embryos from in vitro matured oocytes (0/19, 0%). When we compared NT embryos to parthenotes, developmental rate was not significantly different between NT embryos and parthenotes. These results strongly suggest that the in vivo oocytes will have superior developmental potential to oocytes matured in vitro. Table 1 Effect of different oocyte source on in vitro development following caprine SCNT


2009 ◽  
Vol 21 (1) ◽  
pp. 114
Author(s):  
Y. Du ◽  
Z. Yang ◽  
B. Lv ◽  
L. Lin ◽  
P. M. Kragh ◽  
...  

Delayed activation is commonly used in pig somatic cell nuclear transfer (SCNT) where electrical activation is followed by chemical activation. However, chemical incubation of several hours (up to 4 or 6) is logistically not very convenient even though handmade cloning (HMC) could improve the overall efficiency of pig cloning (Du et al. 2007 Theriogenology 68, 1104–1110). It was reported that a brief exposure of cycloheximide (CX) before electrical activation could significantly increase developmental rate and total blastocyst cell number when simultaneous activation was performed in micromanipulator-based pig cloning (Naruse et al. 2007 Theriogenology 68, 709–716). The purpose of our present work is to investigate whether such activation method is also applicable for pig HMC. Data were analyzed by t-test using SPSS (11.0, SPSS Inc., Chicago, IL, USA). After 42 h in vitro maturation, cumulus cells were removed. In vitro-cultured porcine fetal fibroblasts were used as donor cells. Cytoplast-fibroblast pairing, electrical fusion and activation of fused cytoplast-fibroblast pairs were performed as described previously (Kragh et al. 2005 Theriogenology 64, 1536–1545; Du et al. 2005 Cloning Stem Cells 7, 199–205). Three groups were compared due to different activation protocol. In Group 1 (control), reconstructed embryos were cultured in porcine zygote medium 3 (PZM3) supplemented with 4 mg mL–1 BSA, 5 μg mL–1 cytochalasin B (CB), and 10 μg mL–1 CX for 4 h. In Group 2 (CX priming), fused pairs and the other halves of cytoplasts were incubated in HEPES-buffered TCM-199 medium supplemented with 10% calf serum, 10 μg mL–1 CX for 10 min just before the second fusion or electrical activation. In Group 3 (CB + CX priming), treatment similar to Group 2 was performed except that additional 5 μg mL–1 CB was added for the 10-min incubation. Reconstructed embryos were in vitro cultured in the well of the well (WOW) system for 6 days. Blastocyst rates and total cell numbers of Day 6 blastocysts were evaluated. As illustrated in Table 1, embryos pretreated with both CB and CX gave the best results, with better blastocyst formation (53.8 ± 4.8%; mean ± SEM) and higher cell number (77.2 ± 5.4) compared to the other 2 groups. Our data suggested that CX and CB priming could be used as a solution to the long chemical incubation in porcine SCNT by HMC, making the embryos more receptive to electrical activation. Table 1.In vitro development of HMC reconstructed embryos with different activation protocols


2002 ◽  
Vol 14 (4) ◽  
pp. 191 ◽  
Author(s):  
M. A. Martinez-Diaz ◽  
K. Ikeda ◽  
Y. Takahashi

The effects of cycloheximide (CHX) treatment and the interval between fusion and activation on the development of pig nuclear transfer (NT) embryos constructed with enucleated oocytes and serum-starved granulosa/cumulus cells were examined. One group of couplets was fused and activated simultaneously (FAS) by a single electrical pulse (activation pulse). Another three groups of couplets were fused electricaly 1.5, 2.5 or 4.5 h before being subjected to the activation pulse (FBA). Each group was divided into two subgroups and incubated with or without CHX. The NT embryos treated with CHX showed a high and stable cleavage rate, regardless of the interval between fusion and activation; however, development to blastocysts was improved only when the NT embryos were subjected to FAS with CHX. These results indicate that CHX-sensitive events occurring shortly after FAS may be responsible for the development to blastocysts. Fusion pulse rarely activated M II oocytes, but rapidly dropped the p34cdc2 kinase activity in NT embryos. A pronucleus-like structure was observed 2-2.5 h after the activation pulse with CHX in NT embryos of both the FAS and FBA groups. Therefore, successive inactivation of M-phase promoting factor and cytostatic factor at a certain short interval may also play an important role in the development of NT embryos.


2013 ◽  
Vol 37 (2) ◽  
pp. 57-64
Author(s):  
Yun-Fei Diao ◽  
◽  
Naruse Kenji ◽  
Rong-Xun Han ◽  
Tao- Lin ◽  
...  

2009 ◽  
Vol 21 (1) ◽  
pp. 124
Author(s):  
J. E. Oliver ◽  
T. Delaney ◽  
J. N. Oswald ◽  
M. C. Berg ◽  
B. Oback ◽  
...  

Previous studies in the mouse have shown treatment of somatic cell nuclear transfer (SCNT) embryos with histone deacetylase inhibitors (HDACi) to significantly increase cloning efficiency (Kishigami S et al. 2006 BBRC 340, 183–189; van Thuan N 2007 Asian Reproductive Biology Society 4, 9 abst). Increasing histone acetylation may open donor chromatin allowing better access for oocyte cytoplasmic factors to facilitate reprogramming. Here, we determined the effect of two HDACi, Trichostatin A (TSA), and scriptaid (Sigma-Aldrich, Castle Hill, NSW, Australia), on bovine cloning efficiency. Zona-free SCNT was performed with serum starved fibroblasts fused to enucleated MII-arrested IVM oocytes. After 4 h, reconstructs were activated with 5 μm ionomycin and 2 mm 6-dimethylaminopurine (DMAP) and cultured individually in 5 μL drops of AgResearch synthetic oviduct fluid (SOF) medium. Treatment with HDACi commenced concomitant with the 4 h DMAP incubation and continued in SOF for the remainder of the treatment period; totalling either 18 or 48 h post activation (hpa). TSA concentrations examined were: 0, 5, 50, and 500 nm, with all treatments containing 0.5% DMSO (n = 1121). Following TSA treatment, increased histone (H) acetylation at lysine (K) of H4K5 was confirmed by semi-quantitative immunofluorescence at the eight-cell stage. Scriptaid concentrations examined were: 0, 5, 50, 250, and 1000 nm, with all treatments containing 0.5% DMSO during DMAP and 0.1% DMSO during IVC (n = 1059). In vitro development on Day 7 was expressed in terms of transferable quality embryos as a percentage of reconstructs cultured. Data were analyzed using a generalized linear model with binomial variation and logit link. Embryos from selected treatments were transferred singularly to recipient cows on Day 7 with pregnancy data analyzed using Fisher’s exact test. Day 7 in vitro development was significantly greater with 5 nm TSA treatment for 18 hpa compared to controls (47.1% v. 34.5%; P < 0.02). Treatment of embryos with TSA for 48 hpa had no effect at any concentration tested. In contrast, scriptaid treatment for 18 hpa had no effect in vitro, while exposure for 48 hpa at 1000 nm significantly increased the development of transferable quality embryos compared to 0 nm (44.0% v. 32.4%; P < 0.005). There was no significant difference in embryo survival rates at D150 of gestation between embryos treated with 0 or 5 nm TSA for 18 hpa (8/48 v. 10/48; 16.7% v. 20.8%). However, in vivo development at Day 150 of gestation following treatment of embryos with 1000 nm scriptaid for 48 hpa was significantly lower compared to controls (1/37 v. 6/31; 2.7% v. 19.4%; P < 0.05). Contrary to the mouse, TSA or scriptaid treatment as used in this study did not increase cloning efficiency in cattle. The use of various HDACi either alone or in combination with DNA demethylating agents may still prove beneficial for reprogramming following nuclear transfer. Supported by FRST C10X0303.


Sign in / Sign up

Export Citation Format

Share Document