m phase
Recently Published Documents


TOTAL DOCUMENTS

2136
(FIVE YEARS 753)

H-INDEX

101
(FIVE YEARS 17)

2022 ◽  
Vol 12 (4) ◽  
pp. 873-877
Author(s):  
Dongqian Xie ◽  
Zhicheng Gao ◽  
Mei Liu ◽  
Defeng Wang

Metformin is shown to have hypoglycemic effects. However, the relationship between metformin’s intervention in FFA-induced endoplasmic reticulum stress-mediated insulin resistance (IR) and insulin β-cell apoptosis under high-glucose condition remains unclear. Our study intends to assess their relationship. Human pancreatic β-cells were treated with metformin and cell proliferation and IR were detected by MTT assay along with detection of Wnt/β-catenin signaling by RT-PCR, cell cycle and apoptosis by flow cytometry. Metformin inhibited β cell proliferation which was mediated by FFA-induced endoplasmic reticulum stress in a time-dependent and dose-dependent manner as well as induced cell cycle arrest at G2/M phase. In addition, metformin inhibited β-catenin signaling activation and decreased the expression of c-myc, Dvl-2, survivin, Dvl-3, GSK-3β (p-ser9) and promoted GSK-3 (p-tyr216) and Axin-2 expression. In conclusion, metformin inhibits Wnt/β-catenin signaling and promotes FFA to induce endoplasmic reticulum stress, thereby mediating pancreatic β-cells behaviors.


2022 ◽  
Vol 12 ◽  
Author(s):  
Suqing Liu ◽  
Qingqing Yang ◽  
Binbin Dong ◽  
Chunhui Qi ◽  
Tao Yang ◽  
...  

Gypenosides (Gyps), the major active constituents isolated from Gynostemma pentaphyllum, possess anti-inflammatory and antioxidant activities. Previous studies have demonstrated that Gyps displayed potent ameliorative effects on liver fibrosis and renal fibrosis. In this study, we found that Gyps significantly reduced the mortality of bleomycin-induced pulmonary fibrosis mice (40% mortality rate of mice in the model group versus 0% in the treatment group). Masson staining showed that Gyps could reduce the content of collagen in the lung tissue of pulmonary fibrosis mice Masson staining and immunohistochemistry demonstrated that the expression of the collagen gene α-SMA and fibrosis gene Col1 markedly decreased after Gyps treatment. The active mitosis of fibroblasts is one of the key processes in the pathogenesis of fibrotic diseases. RNA-seq showed that Gyps significantly inhibited mitosis and induced the G2/M phase cell cycle arrest. The mTOR/c-Myc axis plays an important role in the pathological process of pulmonary fibrosis. RNA-seq also demonstrated that Gyps inhibited the mTOR and c-Myc signaling in pulmonary fibrosis mice, which was further validated by Western blot and immunohistochemistry. AKT functions as an upstream molecule that regulates mTOR. Our western blot data showed that Gyps could suppress the activation of AKT. In conclusion, Gyps exerted anti-pulmonary fibrosis activity by inhibiting the AKT/mTOR/c-Myc pathway.


Author(s):  
Dmitri Serjanov ◽  
Galina Bachay ◽  
Dale D. Hunter ◽  
William J. Brunken

Vertebrate retinal development follows a highly stereotyped pattern, in which the retinal progenitor cells (RPCs) give rise to all retinal types in a conserved temporal sequence. Ensuring the proper control over RPC cell cycle exit and re-entry is, therefore, crucially important for the generation of properly functioning retina. In this study, we demonstrate that laminins, indispensible ECM components, at the retinal surface, regulate the mechanisms determining whether RPCs generate proliferative or post-mitotic progeny. In vivo deletion of laminin β2 in mice resulted in disturbing the RPC cell cycle dynamics, and premature cell cycle exit. Specifically, the RPC S-phase is shortened, with increased numbers of cells present in its late stages. This is followed by an accelerated G2-phase, leading to faster M-phase entry. Finally, the M-phase is extended, with RPCs dwelling longer in prophase. Addition of exogenous β2-containing laminins to laminin β2-deficient retinal explants restored the appropriate RPC cell cycle dynamics, as well as S and M-phase progression, leading to proper cell cycle re-entry. Moreover, we show that disruption of dystroglycan, a laminin receptor, phenocopies the laminin β2 deletion cell cycle phenotype. Together, our findings suggest that dystroglycan-mediated ECM signaling plays a critical role in regulating the RPC cell cycle dynamics, and the ensuing cell fate decisions.


Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 65
Author(s):  
Marcello Casertano ◽  
Massimo Genovese ◽  
Paolo Paoli ◽  
Alice Santi ◽  
Anna Aiello ◽  
...  

The chemical investigation of the Mediterranean ascidian Clavelina lepadiformis has led to the isolation of a new lepadin, named lepadin L, and two known metabolites belonging to the same family, lepadins A and B. The planar structure and relative configuration of the decahydroquinoline ring of lepadin L were established both by means of HR-ESIMS and by a detailed as extensive analysis of 1D and 2D NMR spectra. Moreover, microscale derivatization of the new alkaloid lepadin L was performed to assess the relative configuration of the functionalized alkyl side chain. Lepadins A, B, and L were tested for their cytotoxic activity on a panel of cancer cell lines (human melanoma [A375], human breast [MDA-MB-468], human colon adenocarcinoma [HT29], human colorectal carcinoma [HCT116], and mouse myoblast [C2C12]). Interestingly, a deeper investigation into the mechanism of action of the most cytotoxic metabolite, lepadin A, on the A375 cells has highlighted its ability to induce a strongly inhibition of cell migration, G2/M phase cell cycle arrest and a dose-dependent decrease of cell clonogenity, suggesting that it is able to impair self-renewing capacity of A375 cells.


2022 ◽  
Vol 55 (1) ◽  
Author(s):  
Fatemeh Safari ◽  
Bahman Akbari

Abstract Background Chinese hamster ovary cell line has been used routinely as a bioproduction factory of numerous biopharmaceuticals. So far, various engineering strategies have been recruited to improve the production efficiency of this cell line such as apoptosis engineering. Previously, it is reported that the caspase-7 deficiency in CHO cells reduces the cell proliferation rate. But the effect of this reduction on the CHO cell productivity remained unclear. Hence, in the study at hand the effect of caspase-7 deficiency was assessed on the cell growth, viability and protein expression. In addition, the enzymatic activity of caspase-3 was investigated in the absence of caspase-7. Results Findings showed that in the absence of caspase-7, both cell growth and cell viability were decreased. Cell cycle analysis illustrated that the CHO knockout (CHO-KO) cells experienced a cell cycle arrest in G2/M phase. This cell cycle arrest resulted in a 1.7-fold increase in the expression of luciferase in CHO-KO cells compared to parenteral cells. Furthermore, in the apoptotic situation the enzymatic activity of caspase-3 in CHO-KO cells was approximately 3 times more than CHO-K1 cells. Conclusions These findings represented that; however, caspase-7 deficiency reduces the cell proliferation rate but the resulted cell cycle arrest leads to the enhancement of recombinant protein expression. Moreover, increasing in the caspase-3 enzymatic activity compensates the absence of caspase-7 in the caspase cascade of apoptosis.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 169
Author(s):  
Javier Pérez Quiñones ◽  
Cornelia Roschger ◽  
Aitziber Iturmendi ◽  
Helena Henke ◽  
Andreas Zierer ◽  
...  

The design and study of efficient polymer-based drug delivery systems for the controlled release of anticancer drugs is one of the pillars of nanomedicine. The fight against metastatic and invasive cancers demands therapeutic candidates with increased and selective toxicity towards malignant cells, long-term activity and reduced side effects. In this sense, polyphosphazene nanocarriers were synthesized for the sustained release of the anticancer drugs camptothecin (CPT) and epirubicin (EPI). Linear poly(dichloro)phosphazene was modified with lipophilic tocopherol or testosterone glycinate, with antioxidant and antitumor activity, and with hydrophilic Jeffamine M1000 to obtain different polyphosphazene nanocarriers. It allowed us to encapsulate the lipophilic CPT and the more hydrophilic EPI. The encapsulation process was carried out via solvent exchange/precipitation, attaining a 9.2–13.6 wt% of CPT and 0.3–2.4 wt% of EPI. CPT-loaded polyphosphazenes formed 140–200 nm aggregates in simulated body physiological conditions (PBS, pH 7.4), resulting in an 80–100-fold increase of CPT solubility. EPI-loaded polyphosphazenes formed 250 nm aggregates in an aqueous medium. CPT and EPI release (PBS, pH 7.4, 37 °C) was monitored for 202 h, being almost linear during the first 8 h. The slow release of testosterone and tocopherol was also sustained for 150 hours in PBS (pH 7.4 and 6.0) at 37 °C. The co-delivery of testosterone or tocopherol and the anticancer drugs from the nanocarriers was expected. Cells of the human breast cancer cell line MCF-7 demonstrated good uptake of anticancer-drug-loaded nanocarriers after 6 hours. Similarly, MCF-7 spheroids showed good uptake of the anticancer-drug-loaded aggregates after 72 hours. Almost all anticancer-drug-loaded polyphosphazenes exhibited similar or superior toxicity against MCF-7 cells and spheroids when compared to raw anticancer drugs. Additionally, cell-cycle arrest in the G2/M phase was increased in response to the drug-loaded nanocarriers. Almost no toxicity of anticancer-drug-loaded aggregates against primary human lung fibroblasts was observed. Furthermore, the aggregates displayed no hemolytic activity, which is in contrast to the parent anticancer drugs. Consequently, synthesized polyphosphazene-based nanocarriers might be potential nanomedicines for chemotherapy.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 407
Author(s):  
Siriphorn Chimplee ◽  
Sittiruk Roytrakul ◽  
Suchada Sukrong ◽  
Theera Srisawat ◽  
Potchanapond Graidist ◽  
...  

Triple negative breast cancer (TNBC) is a breast cancer subtype characterized by the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor 2 expression. TNBC cells respond poorly to targeted chemotherapies currently in use and the mortality rate of TNBC remains high. Therefore, it is necessary to identify new chemotherapeutic agents for TNBC. In this study, the anti-cancer effects of 7-α-hydroxyfrullanolide (7HF), derived from Grangea maderaspatana, on MCF-7, MDA-MB-231 and MDA-MB-468 breast cancer cells were assessed using MTT assay. The mode of action of 7HF in TNBC cells treated with 6, 12 and 24 µM of 7HF was determined by flow cytometry and propidium iodide (PI) staining for cell cycle analysis and annexin V/fluorescein isothiocyanate + PI staining for detecting apoptosis. The molecular mechanism of action of 7HF in TNBC cells was investigated by evaluating protein expression using proteomic techniques and western blotting. Subsequently, 7HF exhibited the strongest anti-TNBC activity toward MDA-MB-468 cells and a concomitantly weak toxicity toward normal breast cells. The molecular mechanism of action of low-dose 7HF in TNBC cells primarily involved G2/M-phase arrest through upregulation of the expression of Bub3, cyclin B1, phosphorylated Cdk1 (Tyr 15) and p53-independent p21. Contrastingly, the upregulation of PP2A-A subunit expression may have modulated the suppression of various cell survival proteins such as p-Akt (Ser 473), FoxO3a and β-catenin. The concurrent apoptotic effect of 7HF on the treated cells was mediated via both intrinsic and extrinsic modes through the upregulation of Bax and active cleaved caspase-7–9 expression and downregulation of Bcl-2 and full-length caspase-7–9 expression. Notably, the proteomic approach revealed the upregulation of the expression of pivotal protein clusters associated with G1/S-phase arrest, G2/M-phase transition and apoptosis. Thus, 7HF exhibits promising anti-TNBC activity and at a low dose, it modulates signal transduction associated with G2/M-phase arrest and apoptosis.


Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 168
Author(s):  
Ibrahim Morgan ◽  
Ludger A. Wessjohann ◽  
Goran N. Kaluđerović

Anthraquinone derivatives exhibit various biological activities, e.g., antifungal, antibacterial and in vitro antiviral activities. They are naturally produced in many fungal and plant families such as Rhamnaceae or Fabaceae. Furthermore, they were found to have anticancer activity, exemplified by mitoxantrone and pixantrone, and many are well known redox-active compounds. In this study, various nature inspired synthetic anthraquinone derivatives were tested against colon, prostate, liver and cervical cancer cell lines. Most of the compounds exhibit anticancer effects against all cell lines, therefore the compounds were further studied to determine their IC50-values. Of these compounds, 1,4-bis(benzyloxy)-2,3-bis(hydroxymethyl)anthracene-9,10-dione (4) exhibited the highest cytotoxicity against PC3 cells and was chosen for a deeper look into its mechanism of action. Based on flow cytometry, the compound was proven to induce apoptosis through the activation of caspases and to demolish the ROS/RNS and NO equilibrium in the PC3 cell line. It trapped cells in the G2/M phase. Western blotting was performed for several proteins related to the effects observed. Compound 4 enhanced the production of PARP and caspase-3. Moreover, it activated the conversion of LC3A/B-I to LC3A/B-II showing that also autophagy plays a role in its mechanism of action, and it caused the phosphorylation of p70 s6 kinase.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Tamanna Sultana ◽  
Arup Kumar Mitra ◽  
Satadal Das

Abstract Background The incidence of cervical cancer is increasing at an alarming rate in many countries and presently, it is the most common form of malignant cancer being reported among women in India. Development of novel approach for cervical cancer therapy, sparing healthy normal cells overcoming the limitations of prevailing therapies is of prime importance. Mangroves constitute a significant repository of medicinally important plants. Thus, in this study, we aimed to determine the anticancer activity of the mangrove Excoecaria agallocha L. leaf extracts on human cervical cancer (SiHa HPV 16+) cell line with subsequent characterization of the bioactive compounds conferring the anticancer activity and studying the probable underlying mechanism of action of the purified plant extract. Results The plant extract was subjected to silica gel column chromatography and the fractions obtained were analyzed for cytotoxic activity against SiHa cells by MTT assay. One out of the three eluted fractions exhibited selective toxicity against SiHa cells with an IC50 value of 15.538 ± 0.577 µg/mL, while it had no cytotoxic effect on normal healthy human peripheral blood mononuclear cells. High-resolution liquid chromatography mass spectroscopy, coupled to electron spray ionization and diode array detection analysis, led to the structure elucidation and identification of a few pharmacologically important compounds, with Bergenin being present in the highest abundance. Fluorescence microscopy results revealed that the plant extract fraction induced LC3 puncta formation, in EGFP- SiHa cells indicating the onset of autophagy, with simultaneous stimulation of mitophagy. The plant extract also inhibited proliferation of the SiHa-smac-mCherry cells by second mitochondria-derived activator of caspase (SMAC)—induced cytochrome c dependent apoptosis, that was further confirmed with Caspase-3 activation by colorimetric assay. The GFP-dgn in SiHa cells was remarkably protected from proteasomal degradation that might upregulate the survivability of the cells significantly. Flow cytometry followed by Western blot analysis further asserted the ability of the plant extract fraction to cause cell cycle arrest of SiHa cells in the G2/M phase by significantly reducing protein expression levels of cyclin B1 and D1, decreasing Cdc2 level and simultaneously increasing p21 and p53 levels. Conclusion It could be inferred that the aqueous extract of E. agallocha successfully decreased the proliferation of SiHa cervical cancer cells through induction of autophagy and apoptosis in a concerted manner, with simultaneous stimulation of mitophagy and G2/M phase cell cycle arrest, hinting at Bergenin being the major compound conferring the anti-cancer activity of the plant extract. Thus, isolation of the identified bioactive compounds from E. agallocha and their subsequent purification for drug development might serve as a novel medicinal approach for the treatment of cervical cancer in conjugation with existing therapeutic methods.


2022 ◽  
Vol 12 ◽  
Author(s):  
Hulinyue Peng ◽  
Longtai You ◽  
Chunjing Yang ◽  
Kaixin Wang ◽  
Manting Liu ◽  
...  

Triptolide (TP) is the major bioactive compound extracted from Tripterygium wilfordii Hook F. It exerts anti-inflammatory, antirheumatic, antineoplastic, and neuroprotective effects. However, the severe hepatotoxicity induced by TP limits its clinical application. Ginsenoside Rb1 has been reported to possess potential hepatoprotective effects, but its mechanism has not been fully investigated. This study was aimed at investigating the effect of ginsenoside Rb1 against TP-induced cytotoxicity in HL-7702 cells, as well as the underlying mechanism. The results revealed that ginsenoside Rb1 effectively reversed TP-induced cytotoxicity in HL-7702 cells. Apoptosis induced by TP was suppressed by ginsenoside Rb1 via inhibition of death receptor-mediated apoptotic pathway and mitochondrial-dependent apoptotic pathway. Pretreatment with ginsenoside Rb1 significantly reduced Bax/Bcl-2 ratio and down-regulated the expression of Fas, cleaved poly ADP-ribose polymerase (PARP), cleaved caspase-3, and -9. Furthermore, ginsenoside Rb1 reversed TP-induced cell cycle arrest in HL-7702 cells at S and G2/M phase, via upregulation of the expressions of cyclin-dependent kinase 2 (CDK2), cyclin E, cyclin A, and downregulation of the expressions of p53, p21, and p-p53. Ginsenoside Rb1 increased glutathione (GSH) and superoxide dismutase (SOD) levels, but decreased the reactive oxygen species (ROS) and malondialdehyde (MDA) levels. Pretreatment with ginsenoside Rb1 enhanced the expression levels of nuclear factor-erythroid 2-related factor 2 (Nrf2), total Nrf2, NAD(P)H: quinone oxidoreductases-1 (NQO-1), heme oxygenase-1 (HO-1), and Kelch-like ECH-associated protein 1 (Keap1)/Nrf2 complex. Therefore, ginsenoside Rb1 effectively alleviates TP-induced cytotoxicity in HL-7702 cells through activation of the Keap1/Nrf2/ARE antioxidant pathway.


Sign in / Sign up

Export Citation Format

Share Document