scholarly journals Mating-type switching by chromosomal inversion in methylotrophic yeasts suggests an origin for the three-locusSaccharomyces cerevisiaesystem

2014 ◽  
Vol 111 (45) ◽  
pp. E4851-E4858 ◽  
Author(s):  
Sara J. Hanson ◽  
Kevin P. Byrne ◽  
Kenneth H. Wolfe
Yeast ◽  
2020 ◽  
Vol 37 (2) ◽  
pp. 237-245 ◽  
Author(s):  
Dahao Feng ◽  
Anton Stoyanov ◽  
Juliana C. Olliff ◽  
Kenneth H. Wolfe ◽  
Kantcho Lahtchev ◽  
...  

1981 ◽  
Vol 1 (6) ◽  
pp. 522-534
Author(s):  
B Weiffenbach ◽  
J E Haber

In homothallic cells of Saccharomyces cerevisiae, a or alpha mating type information at the mating type locus (MAT) is replaced by the transposition of the opposite mating type allele from HML alpha or HMRa. The rad52-1 mutation, which reduces mitotic and abolishes meiotic recombination, also affects homothallic switching (Malone and Esposito, Proc. Natl. Acad. Sci. U.S.A. 77:503-507, 1980). We have found that both HO rad52 MATa and HO rad52 MAT alpha cells die. This lethality is suppressed by mutations that substantially reduce but do not eliminate homothallic conversions. These mutations map at or near the MAT locus (MAT alpha inc, MATa-inc, MATa stk1) or are unlinked to MAT (HO-1 and swi1). These results suggest that the switching event itself is involved in the lethality. With the exception of swi1, HO rad52 strains carrying one of the above mutations cannot convert mating type at all. MAT alpha rad52 HO swi1 strains apparently can switch MAT alpha to MATa. However, when we analyzed these a maters, we found that few, if any, of them were bona fide MATa cells. These a-like cells were instead either deleted for part of chromosome III distal to and including MAT or had lost the entire third chromosome. Approximately 30% of the time, an a-like cell could be repaired to a normal MATa genotype if the cell was mated to a RAD52 MAT alpha-inc strain. The effects of rad52 were also studied in mata/MAT alpha-inc rad52/rad52 ho/HO diploids. When this diploid attempted to switch mata to MATa, an unstable broken chromosome was generated in nearly every cell. These studies suggest that homothallic switching involves the formation of a double-stranded deoxyribonucleic acid break or a structure which is labile in rad52 cells and results in a broken chromosome. We propose that the production of a double-stranded deoxyribonucleic acid break is the lethal event in rad52 HO cells.


PLoS Genetics ◽  
2012 ◽  
Vol 8 (4) ◽  
pp. e1002630 ◽  
Author(s):  
Jin Li ◽  
Eric Coïc ◽  
Kihoon Lee ◽  
Cheng-Sheng Lee ◽  
Jung-Ae Kim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document