Carbon Source
Recently Published Documents





2022 ◽  
Vol 118 ◽  
pp. 32-45
Congyu Li ◽  
Haiyan Wang ◽  
Guokai Yan ◽  
Weiyang Dong ◽  
Zhaosheng Chu ◽  

2022 ◽  
Taeok Bae ◽  
Bohyun Jeong ◽  
Majid Ali Shah ◽  
Eunjung Roh ◽  
Kyeong Kyu Kim ◽  

The Gram-positive pathogen Staphylococcus aureus is the only bacterium known to synthesize arginine from proline via the arginine-proline interconversion pathway, despite having genes for the well-conserved glutamate pathway. Since the proline-arginine interconversion pathway is repressed by CcpA-mediated carbon catabolite repression (CCR), CCR has been attributed to the arginine auxotrophy of S. aureus. Using ribose as a secondary carbon source, here, we demonstrate that S. aureus arginine auxotrophy is not due to CCR but due to the inadequate concentration of proline degradation product. Proline is degraded by proline dehydrogenase (PutA) into pyrroline-5-carboxylate (P5C). Although the PutA expression was fully induced by ribose, the P5C concentration remained insufficient to support arginine synthesis because P5C was constantly consumed by the P5C reductase ProC. When the P5C concentration was artificially increased by either PutA overexpression or proC-deletion, S. aureus could synthesize arginine from proline regardless of carbon source. In contrast, when the P5C concentration was reduced by overexpression of proC, it inhibited the growth of the ccpA-deletion mutant without arginine. Intriguingly, the ectopic expression of the glutamate pathway enzymes converted S. aureus into arginine prototroph. In an animal experiment, the arginine-proline interconversion pathway was not required for the survival of S. aureus. Based on these results, we concluded that S. aureus does not synthesize arginine from proline under physiological conditions. We also propose that arginine auxotrophy of S. aureus is not due to the CcpA-mediated CCR but due to the inactivity of the conserved glutamate pathway.

2022 ◽  
Jean-David Moore ◽  
Rock Ouimet ◽  
John W. Reynolds

In the last decades, concerns have emerged that boreal forests could convert from a carbon sink to a carbon source, thus accentuating climate change. Although forest fire is generally mentioned as the main factor that could cause the boreal forest to transition to a carbon source, other factors, such as exotic earthworm activity, could also play an important role. Invasive exotic earthworms can also affect nutrient cycling, biodiversity and forest dynamics. In this context, a better knowledge of the distribution of exotic earthworms can help understand the likely changes in the ecosystems that they have colonized. Here we report the results of an exhaustive literature review of the presence of exotic earthworms in the Canadian boreal forest and taiga zones. We identified 230 sectors containing 14 earthworm species (11 exotic, 2 native and 1 putative native) in 6 provinces and 3 territories across Canada’s boreal forest and taiga zone. We also report 23 as-yet unpublished observations from the province of Quebec. We note the presence of earthworms in environments (acid soils, harsh climate) that were historically considered inadequate for their survival. This suggests that the portion of Canada’s boreal forests suitable for their presence or colonization is larger than what was previously believed. This study represents the first compilation of exotic earthworm presence in this large northern area. Factors that could affect their distribution and potential effects on boreal ecosystems are also discussed. Globally, several earthworm species seem to be overcoming the previously assumed limitation by temperature and pH.

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 198
Dragana Stojičić ◽  
Svetlana Tošić ◽  
Gordana Stojanović ◽  
Bojan Zlatković ◽  
Snežana Jovanović ◽  

Clinopodium pulegium (Rochel) Bräuchler (Lamiaceae) is an endangered species endemic to the Southern Carpathians. It is characterized by the production of high amounts of essential oils, which emit volatile organic compounds (VOCs) that have an essential role in biotic and abiotic stress responses and in plant–plant and plant–insect interactions. The present study was initiated to phytochemically examine the influence of different carbon sources in the nutrition medium on VOC emissions of micropropagated C. pulegium plants, using gas chromatography–mass spectrometry analysis of headspace VOCs. The volatile profiles were subjected to multivariate analysis with respect to the presence, concentration and type of carbon source in the nutrient medium. In addition, the effect of different carbohydrates on the density and size of the leaf glandular trichomes, the main structures involved in the emission of VOCs, was determined. A total of 19 VOCs, primarily belonging to mono- and sesquiterpenes previously described in plants, were tentatively identified. Six VOCs were produced at levels higher than 2% of the total VOC emission, dominated by pulegone, ß-pinene and menthone. Inclusion of the carbohydrates in the culture media affected the production of the main leaf trichome-associated volatile allelochemicals although the qualitative composition of the volatiles changed only slightly. Multivariate analysis showed that the concentration, rather than the carbohydrate type, influenced the VOC profile.

2022 ◽  
Vol 15 (1) ◽  
Sukhyeong Cho ◽  
Yun Seo Lee ◽  
Hanyu Chai ◽  
Sang Eun Lim ◽  
Jeong Geol Na ◽  

Abstract Background Ectoine (1,3,4,5-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid) is an attractive compatible solute because of its wide industrial applications. Previous studies on the microbial production of ectoine have focused on sugar fermentation. Alternatively, methane can be used as an inexpensive and abundant resource for ectoine production by using the halophilic methanotroph, Methylomicrobium alcaliphilum 20Z. However, there are some limitations, including the low production of ectoine from methane and the limited tools for the genetic manipulation of methanotrophs to facilitate their use as industrial strains. Results We constructed M. alcaliphilum 20ZDP with a high conjugation efficiency and stability of the episomal plasmid by the removal of its native plasmid. To improve the ectoine production in M. alcaliphilum 20Z from methane, the ectD (encoding ectoine hydroxylase) and ectR (transcription repressor of the ectABC-ask operon) were deleted to reduce the formation of by-products (such as hydroxyectoine) and induce ectoine production. When the double mutant was batch cultured with methane, ectoine production was enhanced 1.6-fold compared to that obtained with M. alcaliphilum 20ZDP (45.58 mg/L vs. 27.26 mg/L) without growth inhibition. Notably, a maximum titer of 142.32 mg/L was reached by the use of an optimized medium for ectoine production containing 6% NaCl and 0.05 μM of tungsten without hydroxyectoine production. This result demonstrates the highest ectoine production from methane to date. Conclusions Ectoine production was significantly enhanced by the disruption of the ectD and ectR genes in M. alcaliphilum 20Z under optimized conditions favoring ectoine accumulation. We demonstrated effective genetic engineering in a methanotrophic bacterium, with enhanced production of ectoine from methane as the sole carbon source. This study suggests a potentially transformational path to commercial sugar-based ectoine production. Graphical Abstract

Zhishuai Chang ◽  
Wei Dai ◽  
Yufeng Mao ◽  
Zhenzhen Cui ◽  
Zhidan Zhang ◽  

Acetate is an economical and environmental-friendly alternative carbon source. Herein, the potential of harnessing Corynebacterium glutamicum as a host to produce 3-hydroxypropionic acid (3-HP) from acetate was explored. First, the expression level of malonyl-CoA reductase from Chloroflexus aurantiacus was optimized through several strategies, strain Cgz2/sod-N-C* showed an MCR enzyme activity of 63 nmol/mg/min and a 3-HP titer of 0.66 g/L in flasks. Next, the expression of citrate synthase in Cgz2/sod-N-C* was weakened to reduce the acetyl-CoA consumption in the TCA cycle, and the resulting strain Cgz12/sod-N-C* produced 2.39 g/L 3-HP from 9.32 g/L acetate. However, the subsequent deregulation of the expression of acetyl-CoA carboxylase genes in Cgz12/sod-N-C* resulted in an increased accumulation of intracellular fatty acids, instead of 3-HP. Accordingly, cerulenin was used to inhibit fatty acid synthesis in Cgz14/sod-N-C*, and its 3-HP titer was further increased to 4.26 g/L, with a yield of 0.50 g 3-HP/g-acetate. Finally, the engineered strain accumulated 17.1 g/L 3-HP in a bioreactor without cerulenin addition, representing the highest titer achieved using acetate as substrate. The results demonstrated that Corynebacterium glutamicum is a promising host for 3-HP production from acetate.

Marine Drugs ◽  
2022 ◽  
Vol 20 (1) ◽  
pp. 68
Elina Didrihsone ◽  
Konstantins Dubencovs ◽  
Mara Grube ◽  
Karlis Shvirksts ◽  
Anastasija Suleiko ◽  

Crypthecodinium cohnii is a marine heterotrophic dinoflagellate that can accumulate high amounts of omega-3 polyunsaturated fatty acids (PUFAs), and thus has the potential to replace conventional PUFAs production with eco-friendlier technology. So far, C. cohnii cultivation has been mainly carried out with the use of yeast extract (YE) as a nitrogen source. In the present study, alternative carbon and nitrogen sources were studied: the extraction ethanol (EE), remaining after lipid extraction, as a carbon source, and dinoflagellate extract (DE) from recycled algae biomass C. cohnii as a source of carbon, nitrogen, and vitamins. In mediums with glucose and DE, the highest specific biomass growth rate reached a maximum of 1.012 h−1, while the biomass yield from substrate reached 0.601 g·g−1. EE as the carbon source, in comparison to pure ethanol, showed good results in terms of stimulating the biomass growth rate (an 18.5% increase in specific biomass growth rate was observed). DE supplement to the EE-based mediums promoted both the biomass growth (the specific growth rate reached 0.701 h−1) and yield from the substrate (0.234 g·g−1). The FTIR spectroscopy data showed that mediums supplemented with EE or DE promoted the accumulation of PUFAs/docosahexaenoic acid (DHA), when compared to mediums containing glucose and commercial YE.

Ping Guo ◽  
Weiwei Xu ◽  
Shi Tang ◽  
Binxia Cao ◽  
Danna Wei ◽  

One cold-adapted strain, named Planococcus sp. XW-1, was isolated from the Yellow Sea. The strain can produce biosurfactant with petroleum as sole source of carbon at low temperature (4 °C). The biosurfactant was identified as glycolipid-type biosurfactant species by thin-layer chromatography (TLC) and Fourier transform infrared spectroscopy (FTIR). It reduced the surface tension of water to 26.8 mN/m with a critical micelle concentration measurement of 60 mg/L. The produced biosurfactant possesses high surface activity at wide ranges of temperature (−18–105 °C), pH values (2–12), and salt concentrations (1–18%). The biosurfactant exhibited higher surface activity and higher growth rate of cells with hexadecane and diesel as carbon source. The strain Planococcus sp. XW-1 was also effective in degrading crude oil, after 21 days of growth at 4 °C in medium with 1% crude oil and 1% (v/v) bacteria broth, 54% of crude oil was degraded. The results suggest that Planococcus sp. XW-1 is a promising candidate for use in the bioremediation of petroleum-contaminated seawater in the Yellow Sea during winter. This study reported for the first time that Planococcus isolated from the Yellow Sea can produce biosurfactant using petroleum as the sole carbon source at low temperature (4 °C), showing its ecological role in the remediation of marine petroleum pollution.

2022 ◽  
Elena Jean Forchielli ◽  
Daniel Jonathan Sher ◽  
Daniel Segre

Microbial communities, through their metabolism, drive carbon cycling in marine environments. These complex communities are composed of many different microorganisms including heterotrophic bacteria, each with its own nutritional needs and metabolic capabilities. Yet, models of ecosystem processes typically treat heterotrophic bacteria as a "black box", which does not resolve metabolic heterogeneity nor address ecologically important processes such as the successive modification of different types of organic matter. Here we directly address the heterogeneity of metabolism by characterizing the carbon source utilization preferences of 63 heterotrophic bacteria representative of several major marine clades. By systematically growing these bacteria on 10 media containing specific subsets of carbon sources found in marine biomass, we obtained a phenotypic fingerprint that we used to explore the relationship between metabolic preferences and phylogenetic or genomic features. At the class level, these bacteria display broadly conserved patterns of preference for different carbon sources. Despite these broad taxonomic trends, growth profiles correlate poorly with phylogenetic distance or genome-wide gene content. However, metabolic preferences are strongly predicted by a handful of key enzymes that preferentially belong to a few enriched metabolic pathways, such as those involved in glyoxylate metabolism and biofilm formation. We find that enriched pathways point to enzymes directly involved in the metabolism of the corresponding carbon source and suggest potential associations between metabolic preferences and other ecologically-relevant traits. The availability of systematic phenotypes across multiple synthetic media constitutes a valuable resource for future quantitative modeling efforts and systematic studies of inter-species interactions.

Sign in / Sign up

Export Citation Format

Share Document