scholarly journals Bottom-up saliency and top-down learning in the primary visual cortex of monkeys

2018 ◽  
Vol 115 (41) ◽  
pp. 10499-10504 ◽  
Author(s):  
Yin Yan ◽  
Li Zhaoping ◽  
Wu Li

Early sensory cortex is better known for representing sensory inputs but less for the effect of its responses on behavior. Here we explore the behavioral correlates of neuronal responses in primary visual cortex (V1) in a task to detect a uniquely oriented bar—the orientation singleton—in a background of uniformly oriented bars. This singleton is salient or inconspicuous when the orientation contrast between the singleton and background bars is sufficiently large or small, respectively. Using implanted microelectrodes, we measured V1 activities while monkeys were trained to quickly saccade to the singleton. A neuron’s responses to the singleton within its receptive field had an early and a late component, both increased with the orientation contrast. The early component started from the outset of neuronal responses; it remained unchanged before and after training on the singleton detection. The late component started ∼40 ms after the early one; it emerged and evolved with practicing the detection task. Training increased the behavioral accuracy and speed of singleton detection and increased the amount of information in the late response component about a singleton’s presence or absence. Furthermore, for a given singleton, faster detection performance was associated with higher V1 responses; training increased this behavioral–neural correlate in the early V1 responses but decreased it in the late V1 responses. Therefore, V1’s early responses are directly linked with behavior and represent the bottom-up saliency signals. Learning strengthens this link, likely serving as the basis for making the detection task more reflexive and less top-down driven.

Author(s):  
Gilles de Hollander ◽  
Wietske van der Zwaag ◽  
Chencan Qian ◽  
Peng Zhang ◽  
Tomas Knapen

AbstractUltra-high field MRI can functionally image the cerebral cortex of human subjects at the submillimeter scale of cortical columns and laminae. Here, we investigate both in concert, by, for the first time, imaging ocular dominance columns (ODCs) in primary visual cortex (V1) across different cortical depths. We ensured that putative ODC patterns in V1 (a) are stable across runs, sessions, and scanners located in different continents (b) have a width (∼1.3 mm) expected from post-mortem and animal work and (c) are absent at the retinotopic location of the blind spot. We then dissociated the effects of bottom-up thalamo-cortical input and attentional feedback processes on activity in V1 across cortical depth. Importantly, the separation of bottom-up information flows into ODCs allowed us to validly compare attentional conditions while keeping the stimulus identical throughout the experiment. We find that, when correcting for draining vein effects and using both model-based and model-free approaches, the effect of monocular stimulation is largest at deep and middle cortical depths. Conversely, spatial attention influences BOLD activity exclusively near the pial surface. Our findings show that simultaneous interrogation of columnar and laminar dimensions of the cortical fold can dissociate thalamocortical inputs from top-down processing, and allow the investigation of their interactions without any stimulus manipulation.Significance StatementThe advent of ultra-high field fMRI allows for the study of the human brain non-invasively at submillimeter resolution, bringing the scale of cortical columns and laminae into focus. De Hollander et al imaged the ocular dominance columns and laminae of V1 in concert, while manipulating top-down attention. This allowed them to separate feedforward from feedback processes in the brain itself, without resorting to the manipulation of incoming information. Their results show how feedforward and feedback processes interact in the primary visual cortex, highlighting the different computational roles separate laminae play.


Author(s):  
Rebecca Jordan ◽  
Georg B. Keller

ABSTRACTProcessing in cortical circuits is driven by combinations of cortical and subcortical inputs. These signals are often conceptually categorized as bottom-up input, conveying sensory information, and top-down input, conveying contextual information. Using intracellular recordings in mouse visual cortex, we measured neuronal responses to visual input, locomotion, and visuomotor mismatches. We show that layer 2/3 (L2/3) neurons compute a difference between top-down motor-related input and bottom-up visual flow input. Most L2/3 neurons responded to visuomotor mismatch with either hyperpolarization or depolarization, and these two response types were associated with distinct physiological properties. Consistent with a subtraction of bottom-up and top-down input, visual and motor-related inputs had opposing influence in L2/3 neurons. In infragranular neurons, we found no evidence of a difference-computation and responses were consistent with a positive integration of visuomotor inputs. Our results provide evidence that L2/3 functions as a bidirectional comparator of top-down and bottom-up input.


2010 ◽  
Vol 68 ◽  
pp. e380
Author(s):  
Tomoki Fukai ◽  
Nobuhiko Wagatsuma ◽  
Tobias C. Potjans ◽  
Markus Diesmann

Perception ◽  
2022 ◽  
Vol 51 (1) ◽  
pp. 60-69
Author(s):  
Li Zhaoping

Finding a target among uniformly oriented non-targets is typically faster when this target is perpendicular, rather than parallel, to the non-targets. The V1 Saliency Hypothesis (V1SH), that neurons in the primary visual cortex (V1) signal saliency for exogenous attentional attraction, predicts exactly the opposite in a special case: each target or non-target comprises two equally sized disks displaced from each other by 1.2 disk diameters center-to-center along a line defining its orientation. A target has two white or two black disks. Each non-target has one white disk and one black disk, and thus, unlike the target, activates V1 neurons less when its orientation is parallel rather than perpendicular to the neurons’ preferred orientations. When the target is parallel, rather than perpendicular, to the uniformly oriented non-targets, the target’s evoked V1 response escapes V1’s iso-orientation surround suppression, making the target more salient. I present behavioral observations confirming this prediction.


2019 ◽  
Vol 1725 ◽  
pp. 146462
Author(s):  
A. Ouelhazi ◽  
V. Bharmauria ◽  
N. Chanauria ◽  
L. Bachatene ◽  
R. Lussiez ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document