scholarly journals SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein

2001 ◽  
Vol 98 (20) ◽  
pp. 11312-11317 ◽  
Author(s):  
C. Endter ◽  
J. Kzhyshkowska ◽  
R. Stauber ◽  
T. Dobner
1991 ◽  
Vol 11 (3) ◽  
pp. 1745-1750 ◽  
Author(s):  
D H Yu ◽  
K Scorsone ◽  
M C Hung

The adenovirus type 5 early region 1A (E1A) gene was introduced into neu-transformed B104-1-1 cells. Cells that expressed E1A possessed reduced transforming activity in vitro and reduced tumorigenicity in nude mice. These results demonstrate that the E1A gene products can act negatively to suppress the transformed phenotype in neu-transformed cells.


1985 ◽  
Vol 56 (2) ◽  
pp. 404-413 ◽  
Author(s):  
B E Roberts ◽  
J S Miller ◽  
D Kimelman ◽  
C L Cepko ◽  
I R Lemischka ◽  
...  

1999 ◽  
Vol 73 (2) ◽  
pp. 1245-1253 ◽  
Author(s):  
Dominique Boivin ◽  
Megan R. Morrison ◽  
Richard C. Marcellus ◽  
Emmanuelle Querido ◽  
Philip E. Branton

ABSTRACT The 34-kDa early-region 4 open reading frame 6 (E4orf6) product of human adenovirus type 5 forms complexes with both the cellular tumor suppressor p53 and the viral E1B 55-kDa protein (E1B-55kDa). E4orf6 can inhibit p53 transactivation activity, as can E1B-55kDa, and in combination these viral proteins cause the rapid turnover of p53. In addition, E4orf6-55kDa complexes play a critical role at later times in the regulation of viral mRNA transport and shutoff of host cell protein synthesis. In the present study, we have further characterized some of the biological properties of E4orf6. Analysis of extracts from infected cells by Western blotting indicated that E4orf6, like E1A and E1B products, is present at high levels until very late times, suggesting that it is available to act throughout the infectious cycle. This pattern is similar to that of E4orf4 but differs markedly from that of another E4 product, E4orf6/7, which is present only transiently. Synthesis of E4orf6 is maximal at early stages but ceases completely with the onset of shutoff of host protein synthesis; however, it was found that unlike E4orf6/7, E4orf6 is very stable, thus allowing high levels to be maintained even at late times. E4orf6 was shown to be phosphorylated at low levels. Coimmunoprecipitation studies in cells lacking p53 indicated that E4orf6 interacts with a number of other proteins. Five of these were shown to be viral or virally induced proteins ranging in size from 102 to 27 kDa, including E1B-55kDa. One such species, of 72 kDa, was shown not to represent the E2 DNA-binding protein and thus remains to be identified. Another appeared to be the L4 100-kDa nonstructural adenovirus late product, but it appeared to be present nonspecifically and not as part of an E4orf6 complex. Apart from p53, three additional cellular proteins, of 84, 19, and 14 kDa were detected by using an adenovirus vector that expresses only E4orf6. The 19-kDa species and a 16-kDa cellular protein were also shown to interact with E4orf6/7. It is possible that complex formation with these viral and cellular proteins plays a role in one or more of the biological activities associated with E4orf6 and E4orf6/7.


1998 ◽  
Vol 72 (9) ◽  
pp. 7144-7153 ◽  
Author(s):  
Richard C. Marcellus ◽  
Josée N. Lavoie ◽  
Dominique Boivin ◽  
Gordon C. Shore ◽  
Gary Ketner ◽  
...  

ABSTRACT Previous studies by our group showed that infection of human and rodent cells by human adenovirus type 5 (Ad5) results in the induction of p53-independent apoptosis and cell death that are dependent upon transactivation of early region 4 (E4). To identify which E4 products are involved, studies were conducted with p53-deficient human SAOS-2 cells infected with various Ad5 E4 mutants. An E4orf6-deficient mutant was defective in cell killing, whereas another that expressed only E4orf6 and E4orf4 killed like wild-type virus, suggesting that E4orf6 may be responsible for cytotoxicity; however, a mutant expressing only E4orf4 induced high levels of cell death, indicating that this E4 product may also be able to induce cytotoxicity. To define the E4 cell death-inducing functions more precisely, cDNAs encoding individual E4 products were introduced into cells by DNA transfection in the absence of other Ad5 proteins. In cotransfections with a cDNA encoding firefly luciferase, enzymatic activity was high in all cases except with E4orf4, where luciferase levels were less than 20% of those in controls. In addition, drug selection of several cell types following transfection with retroviral vector DNA encoding individual E4 products as well as puromycin resistance yielded a large number of cell colonies except when E4orf4 was expressed. These data demonstrated that E4orf4 is the only E4 product capable of independent cell killing. Cell death induced by E4orf4 was due to apoptosis, as evidenced by 4′,6-diamidino-2-phenylindole (DAPI) staining of cell nuclei in E4orf4-expressing cells. Thus, although E4orf6 may play some role, these results suggested that E4orf4 may be the major E4 product responsible for induction of p53-independent apoptosis.


Sign in / Sign up

Export Citation Format

Share Document