Protein Synthesis
Recently Published Documents





Dulama Richani ◽  
Robert B Gilchrist

Abstract Oocytes are maintained in a state of meiotic arrest following the first meiotic division until ovulation is triggered. Within the antral follicle, meiotic arrest is actively suppressed in a process facilitated by the cyclic nucleotides cGMP and cAMP. If removed from this inhibitory follicular environment and cultured in vitro, mammalian oocytes undergo spontaneous meiotic resumption in the absence of the usual stimulatory follicular stimuli, leading to asynchronicity with oocyte cytoplasmic maturation and lower developmental competence. For more than 50 years, pharmacological agents have been used to attenuate oocyte germinal vesicle (GV) breakdown in vitro. Agents which increase intra-oocyte cAMP or prevent its degradation have been predominantly used, however agents such as kinase and protein synthesis inhibitors have also been trialled. Twenty years of research demonstrates that maintaining GV arrest for a period before in vitro maturation (IVM) improves oocyte developmental competence, and is likely attributed to maintenance of bidirectional communication with cumulus cells leading to improved oocyte metabolic function. However, outcomes are influenced by various factors including the mode of action of the modulators, dose, treatment duration, species, and the degree of hormonal priming of the oocyte donor. Cyclic GMP and/or cAMP modulation in a prematuration step (called pre-IVM) prior to IVM has shown the greatest consistency in improving oocyte developmental competence, whereas kinase and protein synthesis inhibitors have proven less effective at improving IVM outcomes. Such pre-IVM approaches have shown potential to alter current use of artificial reproductive technologies in medical and veterinary practice.

2021 ◽  
Vol 7 (38) ◽  
Chao Sun ◽  
Andreas Nold ◽  
Claudia M. Fusco ◽  
Vidhya Rangaraju ◽  
Tatjana Tchumatchenko ◽  

RNA ◽  
2021 ◽  
pp. rna.078926.121
Srivats Venkataramanan ◽  
Margaret Gadek ◽  
Lorenzo Calviello ◽  
Kevin Wilkins ◽  
Stephen Floor

DDX3 is a DEAD-box RNA helicase that regulates translation and is encoded by the X- and Y-linked paralogs DDX3X and DDX3Y. While DDX3X is ubiquitously expressed in human tissues and essential for viability, DDX3Y is male-specific and shows lower and more variable expression than DDX3X in somatic tissues. Heterozygous genetic lesions in DDX3X mediate a class of developmental disorders called DDX3X syndrome, while loss of DDX3Y is implicated in male infertility. One possible explanation for female-bias in DDX3X syndrome is that DDX3Y encodes a polypeptide with different biochemical activity. In this study, we use ribosome profiling and in vitro translation to demonstrate that the X- and Y-linked paralogs of DDX3 play functionally redundant roles in translation. We find that transcripts that are sensitive to DDX3X depletion or mutation are rescued by complementation with DDX3Y. Our data indicate that DDX3X and DDX3Y proteins can functionally complement each other in the context of mRNA translation in human cells. DDX3Y is not expressed in a large fraction of the central nervous system. These findings suggest that expression differences, not differences in paralog-dependent protein synthesis, underlie the sex-bias of DDX3X-associated diseases.

2021 ◽  
Aleksandar Radakovic ◽  
Saurja Dasgupta ◽  
Tom H Wright ◽  
Harry R.M. Aitken ◽  
Jack W Szostak

Aminoacylated tRNAs, which harbor a covalent linkage between amino acids and RNA, are a universally conserved feature of life. Because they are essential substrates for ribosomal translation, aminoacylated oligonucleotides must have been present in the RNA World prior to the evolution of the ribosome. One possibility we are exploring is that the aminoacyl ester linkage served another function before being recruited for ribosomal protein synthesis. The nonenzymatic assembly of ribozymes from short RNA oligomers under realistic conditions remains a key challenge in demonstrating a plausible pathway from prebiotic chemistry to the RNA World. Here, we show that aminoacylated RNAs can undergo template-directed assembly into chimeric amino acid-RNA polymers that are active ribozymes. We demonstrate that such chimeric polymers can retain the enzymatic function of their all-RNA counterparts by generating chimeric hammerhead, RNA ligase, and aminoacyl transferase ribozymes. Amino acids with diverse side chains form linkages that are well tolerated within the RNA backbone, potentially bringing novel functionalities to ribozyme catalysis. Our work suggests that aminoacylation chemistry may have played a role in primordial ribozyme assembly. Increasing the efficiency of this process provides an evolutionary rationale for the emergence of sequence and amino acid specific aminoacyl-RNA synthetase ribozymes, which could then have generated the substrates for ribosomal protein synthesis.

2021 ◽  
Vol 28 (10) ◽  
pp. 371-389
Felippe E. Amorim ◽  
Renata L. Chapot ◽  
Thiago C. Moulin ◽  
Jonathan L.C. Lee ◽  
Olavo B. Amaral

Remembering is not a static process: When retrieved, a memory can be destabilized and become prone to modifications. This phenomenon has been demonstrated in a number of brain regions, but the neuronal mechanisms that rule memory destabilization and its boundary conditions remain elusive. Using two distinct computational models that combine Hebbian plasticity and synaptic downscaling, we show that homeostatic plasticity can function as a destabilization mechanism, accounting for behavioral results of protein synthesis inhibition upon reactivation with different re-exposure times. Furthermore, by performing systematic reviews, we identify a series of overlapping molecular mechanisms between memory destabilization and synaptic downscaling, although direct experimental links between both phenomena remain scarce. In light of these results, we propose a theoretical framework where memory destabilization can emerge as an epiphenomenon of homeostatic adaptations prompted by memory retrieval.

2021 ◽  
Julie Rich-Robinson ◽  
Afton Russell ◽  
Eleanor Mancini ◽  
Maitreyi Das

In fission yeast, polarized cell growth stops during division and resumes after cytokinesis completes and cells separate. It is unclear how growth reactivation is timed to occur immediately after cell separation. We uncoupled these sequential events by delaying cytokinesis with a temporary Latrunculin A treatment. Mitotic cells recovering from treatment initiate end growth during septation, displaying a polar elongation simultaneous with septation (PrESS) phenotype. PrESS cell ends reactivate Cdc42, a major regulator of polarized growth, during septation, but at a fixed time after anaphase B. A candidate screen implicates Rga4, a negative regulator of Cdc42, in this process. We show that Rga4 appears punctate at the cell sides during G2, but is diffuse during mitosis, extending to the ends. While the Morphogenesis Orb6 (MOR) pathway is known to promote cell separation and growth by activating protein synthesis, we find that for polarized growth, removal of Rga4 from the ends is also necessary. Therefore, we propose that growth resumes after division once the MOR pathway is activated and the ends lose Rga4 in a cell-cycle-dependent manner.

eLife ◽  
2021 ◽  
Vol 10 ◽  
David M Garcia ◽  
Edgar A Campbell ◽  
Christopher M Jakobson ◽  
Mitsuhiro Tsuchiya ◽  
Ethan A Shaw ◽  

In fluctuating environments, switching between different growth strategies, such as those affecting cell size and proliferation, can be advantageous to an organism. Trade-offs arise, however. Mechanisms that aberrantly increase cell size or proliferation—such as mutations or chemicals that interfere with growth regulatory pathways—can also shorten lifespan. Here we report a natural example of how the interplay between growth and lifespan can be epigenetically controlled. We find that a highly conserved RNA-modifying enzyme, the pseudouridine synthase Pus4/TruB, can act as a prion, endowing yeast with greater proliferation rates at the cost of a shortened lifespan. Cells harboring the prion grow larger and exhibit altered protein synthesis. This epigenetic state, [BIG+] (better in growth), allows cells to heritably yet reversibly alter their translational program, leading to the differential synthesis of dozens of proteins, including many that regulate proliferation and aging. Our data reveal a new role for prion-based control of an RNA-modifying enzyme in driving heritable epigenetic states that transform cell growth and survival.

2021 ◽  
Philippe J. M. Pinckaers ◽  
Jorn Trommelen ◽  
Tim Snijders ◽  
Luc J. C. van Loon

AbstractThere is a global trend of an increased interest in plant-based diets. This includes an increase in the consumption of plant-based proteins at the expense of animal-based proteins. Plant-derived proteins are now also frequently applied in sports nutrition. So far, we have learned that the ingestion of plant-derived proteins, such as soy and wheat protein, result in lower post-prandial muscle protein synthesis responses when compared with the ingestion of an equivalent amount of animal-based protein. The lesser anabolic properties of plant-based versus animal-derived proteins may be attributed to differences in their protein digestion and amino acid absorption kinetics, as well as to differences in amino acid composition between these protein sources. Most plant-based proteins have a low essential amino acid content and are often deficient in one or more specific amino acids, such as lysine and methionine. However, there are large differences in amino acid composition between various plant-derived proteins or plant-based protein sources. So far, only a few studies have directly compared the muscle protein synthetic response following the ingestion of a plant-derived protein versus a high(er) quality animal-derived protein. The proposed lower anabolic properties of plant- versus animal-derived proteins may be compensated for by (i) consuming a greater amount of the plant-derived protein or plant-based protein source to compensate for the lesser quality; (ii) using specific blends of plant-based proteins to create a more balanced amino acid profile; (iii) fortifying the plant-based protein (source) with the specific free amino acid(s) that is (are) deficient. Clinical studies are warranted to assess the anabolic properties of the various plant-derived proteins and their protein sources in vivo in humans and to identify the factors that may or may not compromise the capacity to stimulate post-prandial muscle protein synthesis rates. Such work is needed to determine whether the transition towards a more plant-based diet is accompanied by a transition towards greater dietary protein intake requirements.

Sign in / Sign up

Export Citation Format

Share Document