cellular factor
Recently Published Documents


TOTAL DOCUMENTS

112
(FIVE YEARS 10)

H-INDEX

29
(FIVE YEARS 1)

2021 ◽  
Author(s):  
JaeHun Cheong ◽  
Jeong A Jang ◽  
Bok Kyung Ku

Abstract I. Background: Foot-and-mouth disease virus (FMDV) is a highly contagious viral pathogen in cloven-hoofed animal including cattle and pig, yet progress in the molecular mechanisms of FMDV genome replication is notably lagging behind that for many RNA viruses. A positive single stranded RNA of FMDV encodes a single long open reading frame flanked by a long 5’-untranslated region (5’UTR) and a short 3’-UTR. The cis-responsive element (CRE) of 5’UTR is critical for FMDV genome replication. II. Methods and Results: Here, we described that poly(C)-binding protein 2 (PCBP2) is revealed as a CRE-binding cellular factor. The RNA immunoprecipitation experiment confirmed that the FMDV CRE interacts with PCBP2 protein. CRE derived from FMDV infection in pig bound stronger to PCBP2 protein of pig than cattle PCBP2, showing host specific RNA-protein interaction. In addition, PCBP2 interacts with FMDV 3B protein together with CRE. The interaction of PCBP and 3B protein with CRE also showed host-specific manners. III. Conclusions: These data suggest that cellular PCBP2 may serve as a host cellular factor of FMDV to facilitate viral replication through interaction with the viral genome and contribute to determine host susceptibility of FMDV variants. The inter-molecular interaction between cellular PCBP2 and FMDV 3B and CRE provides perspectives for antiviral strategy.


2020 ◽  
Author(s):  
Aurélie Drouin ◽  
Julie Migraine ◽  
Marie-Alice Durand ◽  
Alain Moreau ◽  
Julien Burlaud-Gaillard ◽  
...  

Interferon-induced transmembrane protein 3 (IFITM3) is a cellular factor that reduces HIV-1 infectivity by an incompletely understood mechanism. We show here that viruses differing only in the envelope glycoprotein (Env) expressed on their surface have different sensitivities to IFITM3. Measurements of the sensitivity of viruses to neutralizing antibodies showed that IFITM3 increased the sensitivity of IFITM3-sensitive viruses to PG16, which targets the V1V2 loop, suggesting that IFITM3 promotes exposure of the PG16 epitope of IFITM3-sensitive viruses. Exchanges of V1V2 loops between the Env proteins of sensitive and resistant viruses revealed that V1V2 and V3 act together to modulate viral sensitivity to IFITM3. Co-immunoprecipitation experiments showed that IFITM3 interacted with both the precursor (gp160) and cleaved (gp120) forms of Env from IFITM3-sensitive viruses, but only with the precursor (gp160) form of Env from IFITM3-resistant viruses. This finding suggests that the interaction between the Env of resistant viruses and IFITM3 was inhibited once Env had been processed in the Golgi apparatus. This hypothesis was supported by immunofluorescence experiments, which showed a strong colocalization of IFITM3 with the Env of sensitive viruses, but only weak colocalization with the Env of resistant viruses on the plasma membrane of virus-producing cells. Together, these results indicate that IFITM3 interacts with Env, inducing conformational changes that may decrease viral infectivity. This antiviral action is, nevertheless, modulated by the nature of the Env, in particular its V1V2 and V3 loops, which after maturation may be able to escape this interaction. IMPORTANCE Interferon-induced transmembrane protein 3 (IFITM3) is a cellular factor that reduces HIV-1 infectivity by an incompletely understood mechanism. This study aimed to elucidate the role of the HIV-1 envelope glycoprotein (Env) in determining viral susceptibility to IFITM3. We found that viruses differing only in Env expressed on their surface had different sensitivities to IFITM3. By comparing the Env proteins of viruses that were highly sensitive or resistant to IFITM3, we obtained new insight in the mechanisms by which HIV-1 escapes this protein. We showed that IFITM3 interacts with the Env protein of sensitive viruses in virion-producing cells, inducing conformational changes that may decrease viral infectivity. However, this antiviral action is modulated by the nature of Env, particularly the V1V2 and V3 loops, which may be able to escape this interaction after processing in the Golgi.


2020 ◽  
Vol 39 (10) ◽  
pp. 1895-1906
Author(s):  
Zanxin Wang ◽  
Xianmian Zhuang ◽  
Bailang Chen ◽  
Dongjie Feng ◽  
Gang Li ◽  
...  

2020 ◽  
Vol 94 (13) ◽  
Author(s):  
Jingjing Ma ◽  
Junli Jia ◽  
Xuefeng Jiang ◽  
Mengyuan Xu ◽  
Jinfeng Guo ◽  
...  

ABSTRACT Human herpesviruses 6A and 6B (HHV-6A and HHV-6B, respectively) are two virus species in the betaherpesvirus subfamily that exhibit T cell tropism. CD46 and CD134 are the cellular receptors for HHV-6A and HHV-6B, respectively. Interestingly, the efficiency of HHV-6A/6B entry is different among different types of target cells despite similar receptor expression levels on these cells. Here, we found that the cellular factor gp96 (also known as glucose-regulated protein 94 [GRP94]) is expressed on the cell surface and interacts with viral glycoprotein Q1 (gQ1) during virus entry. gp96 cell surface expression levels are associated with the efficiency of HHV-6A and HHV-6B entry into target cells. Both loss-of-function and gain-of-function experiments indicated that gp96 plays an important role in HHV-6 infection. Our findings provide new insight into the HHV-6 entry process and might suggest novel therapeutic targets for HHV-6 infection. IMPORTANCE Although new clinical importance has been revealed for human herpesviruses 6A (HHV-6A) and 6B, much is still unknown about the life cycles of these viruses in target cells. We identified a novel cellular factor, gp96, that is critical for both HHV-6A and -6B entry into host cells. As gp96 can function as an adjuvant in vaccine development for both infectious agents and cancers, it can be a potential therapeutic target for infection by these two viruses.


Author(s):  
Maria Günther ◽  
Anja Bauer ◽  
Martin Müller ◽  
Luca Zaeck ◽  
Stefan Finke

Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1555 ◽  
Author(s):  
Christina Whitten-Bauer ◽  
Josan Chung ◽  
Andoni Gómez-Moreno ◽  
Pilar Gomollón-Zueco ◽  
Michael D. Huber ◽  
...  

Development of hepatitis C virus (HCV) infection cell culture systems has permitted the identification of cellular factors that regulate the HCV life cycle. Some of these cellular factors affect steps in the viral life cycle that are tightly associated with intracellular membranes derived from the endoplasmic reticulum (ER). Here, we describe the discovery of erlin-1 protein as a cellular factor that regulates HCV infection. Erlin-1 is a cholesterol-binding protein located in detergent-resistant membranes within the ER. It is implicated in cholesterol homeostasis and the ER-associated degradation pathway. Silencing of erlin-1 protein expression by siRNA led to decreased infection efficiency characterized by reduction in intracellular RNA accumulation, HCV protein expression and virus production. Mechanistic studies revealed that erlin-1 protein is required early in the infection, downstream of cell entry and primary translation, specifically to initiate RNA replication, and later in the infection to support infectious virus production. This study identifies erlin-1 protein as an important cellular factor regulating HCV infection.


2019 ◽  
Vol 20 (23) ◽  
pp. 5963
Author(s):  
Zsuzsanna Orosz ◽  
Helga Bárdos ◽  
Amir Shemirani ◽  
Ildikó Beke Debreceni ◽  
Riitta Lassila ◽  
...  

Cellular factor XIII (cFXIII, FXIII-A2), a transglutaminase, has been demonstrated in a few cell types. Its main function is to cross-link proteins by isopeptide bonds. Here, we investigated the presence of cFXIII in cells of human cornea. Tissue sections of the cornea were immunostained for FXIII-A in combination with staining for CD34 antigen or isopeptide cross-links. Isolated corneal keratocytes were also evaluated by immunofluorescent microscopy and flow cytometry. FXIII-A in the corneal stroma was quantified by Western blotting. FXIII-A mRNA was detected by RT-qPCR. The cornea of FXIII-A-deficient patients was evaluated by cornea topography. FXIII-A was detected in 68 ± 13% of CD34+ keratocytes. Their distribution in the corneal stroma was unequal; they were most abundant in the subepithelial tertile. cFXIII was of cytoplasmic localization. In the stroma, 3.64 ng cFXIII/mg protein was measured. The synthesis of cFXIII by keratocytes was confirmed by RT-qPCR. Isopeptide cross-links were detected above, but not within the corneal stroma. Slight abnormality of the cornea was detected in six out of nine FXIII-A-deficient patients. The presence of cFXIII in human keratocytes was established for the first time. cFXIII might be involved in maintaining the stability of the cornea and in the corneal wound healing process.


2019 ◽  
Vol 42 (1) ◽  
pp. 41-46
Author(s):  
Seyoung Kim ◽  
Yong-Bin Cho ◽  
Chi-une Song ◽  
Seong-il Eyun ◽  
Young-Jin Seo

2019 ◽  
Vol 94 (2) ◽  
Author(s):  
Lei Shuai ◽  
Jinliang Wang ◽  
Dandan Zhao ◽  
Zhiyuan Wen ◽  
Jinying Ge ◽  
...  

ABSTRACT Rabies virus (RABV) is a widespread pathogen that causes fatal disease in humans and animals. It has been suggested that multiple host factors are involved in RABV host entry. Here, we showed that RABV uses integrin β1 (ITGB1) for cellular entry. RABV infection was drastically decreased after ITGB1 short interfering RNA knockdown and moderately increased after ITGB1 overexpression in cells. ITGB1 directly interacts with RABV glycoprotein. Upon infection, ITGB1 is internalized into cells and transported to late endosomes together with RABV. The infectivity of cell-adapted RABV in cells and street RABV in mice was neutralized by ITGB1 ectodomain soluble protein. The role of ITGB1 in RABV infection depends on interaction with fibronectin in cells and mice. We found that Arg-Gly-Asp (RGD) peptide and antibody to ITGB1 significantly blocked RABV infection in cells in vitro and street RABV infection in mice via intramuscular inoculation but not the intracerebral route. ITGB1 also interacts with nicotinic acetylcholine receptor, which is the proposed receptor for peripheral RABV infection. Our findings suggest that ITGB1 is a key cellular factor for RABV peripheral entry and is a potential therapeutic target for postexposure treatment against rabies. IMPORTANCE Rabies is a severe zoonotic disease caused by rabies virus (RABV). However, the nature of RABV entry remains unclear, which has hindered the development of therapy for rabies. It is suggested that modulations of RABV glycoprotein and multiple host factors are responsible for RABV invasion. Here, we showed that integrin β1 (ITGB1) directly interacts with RABV glycoprotein, and both proteins are internalized together into host cells. Differential expression of ITGB1 in mature muscle and cerebral cortex of mice led to A-4 (ITGB1-specific antibody), and RGD peptide (competitive inhibitor for interaction between ITGB1 and fibronectin) blocked street RABV infection via intramuscular but not intracerebral inoculation in mice, suggesting that ITGB1 plays a role in RABV peripheral entry. Our study revealed this distinct cellular factor in RABV infection, which may be an attractive target for therapeutic intervention.


2019 ◽  
Vol 517 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Kayo Sugitani ◽  
Kazuhiro Ogai ◽  
Haruka Muto ◽  
Keisuke Onodera ◽  
Ayaka Matsuoka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document