Correction: DNA Primase Activity Associated with DNA Polymerase [alpha] from Xenoupus leavis ovaries

1983 ◽  
Vol 80 (12) ◽  
pp. 3870-3870
1983 ◽  
Vol 258 (11) ◽  
pp. 6698-6700 ◽  
Author(s):  
T Yagura ◽  
S Tanaka ◽  
T Kozu ◽  
T Seno ◽  
D Korn

1992 ◽  
Vol 206 (1) ◽  
pp. 7-13 ◽  
Author(s):  
Vladimir N. PODUST ◽  
Olga V. VLADIMIROVA ◽  
Elena N. MANAKOVA ◽  
Olga I. LAVRIK

1982 ◽  
Vol 79 (23) ◽  
pp. 7209-7213 ◽  
Author(s):  
M. Shioda ◽  
E. M. Nelson ◽  
M. L. Bayne ◽  
R. M. Benbow

Genetics ◽  
1993 ◽  
Vol 133 (2) ◽  
pp. 183-191 ◽  
Author(s):  
M P Longhese ◽  
L Jovine ◽  
P Plevani ◽  
G Lucchini

Abstract Different pri1 and pri2 conditional mutants of Saccharomyces cerevisiae altered, respectively, in the small (p48) and large (p58) subunits of DNA primase, show an enhanced rate of both mitotic intrachromosomal recombination and spontaneous mutation, to an extent which is correlated with the severity of their defects in cell growth and DNA synthesis. These effects might be attributable to the formation of nicked and gapped DNA molecules that are substrates for recombination and error-prone repair, due to defective DNA replication in the primase mutants. Furthermore, pri1 and pri2 mutations inhibit sporulation and affect spore viability, with the unsporulated mutant cells arresting with a single nucleus, suggesting that DNA primase plays a critical role during meiosis. The observation that all possible pairwise combinations of two pri1 and two pri2 alleles are lethal provides further evidence for direct interaction of the primase subunits in vivo. Immunopurification and immunoprecipitation studies on wild-type and mutant strains suggest that the small subunit has a major role in determining primase activity, whereas the large subunit directly interacts with DNA polymerase alpha, and either mediates or stabilizes association of the p48 polypeptide in the DNA polymerase alpha-primase complex.


1985 ◽  
Vol 5 (5) ◽  
pp. 1170-1183
Author(s):  
M Yamaguchi ◽  
E A Hendrickson ◽  
M L DePamphilis

Unique single-stranded regions of simian virus 40 DNA, phage M13 virion DNA, and several homopolymers were used as templates for the synthesis of (p)ppRNA-DNA chains by CV-1 cell DNA primase-DNA polymerase alpha. Intact RNA primers, specifically labeled with an RNA capping enzyme, were typically 6 to 8 ribonucleotides long, although their lengths ranged from 1 to 9 bases. The fraction of intact RNA primers 1 to 4 ribonucleotides long was 14 to 73%, depending on the template used. RNA primer length varied among primers initiated at the same nucleotide, as well as with primers initiated at different sites. Thus, the size of an RNA primer depended on template sequence. Initiation sites were identified by mapping 5' ends of nascent RNA-DNA chains on the template sequence, identifying the 5'-terminal ribonucleotide, and partially sequencing one RNA primer. A total of 56 initiation events were identified on simian virus 40 DNA, an average of 1 every 16 bases. Some sites were preferred over others. A consensus sequence for initiation sites consisted of either 3'-dCTTT or 3'-dCCC centered within 7 to 25 pyrimidine-rich residues; the 5' ends of RNA primers were complementary to the dT or dC. High ATP/GTP ratios promoted initiation of RNA primer synthesis at 3'-dCTTT sites, whereas low ATP/GTP ratios promoted initiation at 3'-dCCC sites. Similarly, polydeoxythymidylic acid and polydeoxycytidylic acid were the only effective homopolymer templates. Thus, both template sequence and ribonucleoside triphosphate concentrations determine which initiation sites are used by DNA primase-DNA polymerase alpha. Remarkably, initiation sites selected in vitro were strikingly different from initiation sites selected during simian virus 40 DNA replication in vivo.


Sign in / Sign up

Export Citation Format

Share Document