scholarly journals Special evolution of neurohypophysial hormones in cartilaginous fishes: asvatocin and phasvatocin, two oxytocin-like peptides isolated from the spotted dogfish (Scyliorhinus caniculus).

1994 ◽  
Vol 91 (23) ◽  
pp. 11266-11270 ◽  
Author(s):  
J. Chauvet ◽  
Y. Rouille ◽  
C. Chauveau ◽  
M. T. Chauvet ◽  
R. Acher
2021 ◽  
pp. 1-12
Author(s):  
Georg F. Striedter ◽  
R. Glenn Northcutt

Comparative neurobiologists have long wondered when and how the dorsal pallium (e.g., mammalian neocortex) evolved. For the last 50 years, the most widely accepted answer has been that this structure was already present in the earliest vertebrates and, therefore, homologous between the major vertebrate lineages. One challenge for this hypothesis is that the olfactory bulbs project throughout most of the pallium in the most basal vertebrate lineages (notably lampreys, hagfishes, and lungfishes) but do not project to the putative dorsal pallia in teleosts, cartilaginous fishes, and amniotes (i.e., reptiles, birds, and mammals). To make sense of these data, one may hypothesize that a dorsal pallium existed in the earliest vertebrates and received extensive olfactory input, which was subsequently lost in several lineages. However, the dorsal pallium is notoriously difficult to delineate in many vertebrates, and its homology between the various lineages is often based on little more than its topology. Therefore, we suspect that dorsal pallia evolved independently in teleosts, cartilaginous fishes, and amniotes. We further hypothesize that the emergence of these dorsal pallia was accompanied by the phylogenetic restriction of olfactory projections to the pallium and the expansion of inputs from other sensory modalities. We do not deny that the earliest vertebrates may have possessed nonolfactory sensory inputs to some parts of the pallium, but such projections alone do not define a dorsal pallium.


2012 ◽  
Vol 80 (2) ◽  
pp. 152-165 ◽  
Author(s):  
John C. Montgomery ◽  
David Bodznick ◽  
Kara E. Yopak
Keyword(s):  

Keyword(s):  

In this paper, which is wholly occupied with anatomical details, the author refers to his paper on the Torpedo, which was published in the Philosophical Transactions for 1834; and also to Müller’s work “De Glandularum secernentium structura penitiori,” whose descriptions and views are not in accordance with those given in that paper. In the present memoir he adduces evidence of the accuracy of his former statement, chiefly founded on microscopical observations, and offers some conjectures respecting the functions of several organs found in cartilaginous fishes; but does not pretend to attach undue importance to his speculations.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Keiko Tanaka ◽  
Takashi Shiina ◽  
Taketeru Tomita ◽  
Shingo Suzuki ◽  
Kazuyoshi Hosomichi ◽  
...  

Hexanchiformes is regarded as a monophyletic taxon, but the morphological and genetic relationships between the five extant species within the order are still uncertain. In this study, we determined the whole mitochondrial DNA (mtDNA) sequences of seven sharks including representatives of the five Hexanchiformes, one squaliform, and one carcharhiniform and inferred the phylogenetic relationships among those species and 12 other Chondrichthyes (cartilaginous fishes) species for which the complete mitogenome is available. The monophyly of Hexanchiformes and its close relation with all other Squaliformes sharks were strongly supported by likelihood and Bayesian phylogenetic analysis of 13,749 aligned nucleotides of 13 protein coding genes and two rRNA genes that were derived from the whole mDNA sequences of the 19 species. The phylogeny suggested that Hexanchiformes is in the superorder Squalomorphi,Chlamydoselachus anguineus(frilled shark) is the sister species to all other Hexanchiformes, and the relations within Hexanchiformes are well resolved asChlamydoselachus, (Notorynchus, (Heptranchias, (Hexanchus griseus,H. nakamurai))). Based on our phylogeny, we discussed evolutionary scenarios of the jaw suspension mechanism and gill slit numbers that are significant features in the sharks.


Sign in / Sign up

Export Citation Format

Share Document