Reproduction
Latest Publications


TOTAL DOCUMENTS

13532
(FIVE YEARS 479)

H-INDEX

152
(FIVE YEARS 11)

Published By Bioscientifica

1741-7899, 1470-1626

Reproduction ◽  
2022 ◽  
Author(s):  
Kashmira Bane ◽  
Junita Desouza ◽  
Asma Rojewale ◽  
Rajendra Katkam ◽  
Gwendolyn Fernandes ◽  
...  

Recent data suggest that the DNA damage response (DDR) is altered in the eutopic endometrium (EE) of women with endometriosis and this probably ensues in response to higher DNA damage encountered by the EE in endometriosis. DDR operates in a tissue-specific manner and involves different pathways depending on the type of DNA lesions. Among these pathways, the non-homologous end joining (NHEJ) pathway plays a critical role in the repair of double-stranded DNA breaks. The present study was undertaken to explore whether NHEJ is affected in the EE of women with endometriosis. Towards this, we focused on the X-Ray Repair Cross-Complementing 4 (XRCC4) protein, one of the core components of the NHEJ pathway. Endometrial XRCC4 protein levels in the mid-proliferative phase were found significantly (p<0.05) downregulated in women with endometriosis, compared to control women. Investigation of a microarray-based largest dataset in the GEO database (GSE51981) revealed a similar trend at the transcript level in the EE of women with endometriosis, compared to control women. Further in-vitro studies were undertaken to explore the effects of H2O2-induced oxidative stress on DNA damage, as assessed by γ-H2AFX and 8-hydroxy-2’-deoxyguanosine (8-OHdG) immunolocalization, and XRCC4 protein levels in endometrial stromal (ThESCs) and epithelial (Ishikawa) cells. A significant decrease in XRCC4 protein levels and significantly higher localization of γ-H2AFX and 8-OHdG were evident in ThESCs and Ishikawa cells experiencing oxidative stress. Overall, the study demonstrates that the endometrial XRCC4 expression is dysregulated in women with endometriosis and this could be due to higher oxidative stress in endometriosis.


Reproduction ◽  
2022 ◽  
Author(s):  
Tom Moore ◽  
John M Williams ◽  
Maria Angeles Becerra-Rodriguez ◽  
Matthew Dunne ◽  
Robert Kammerer ◽  
...  

Pregnancy-specific glycoproteins (PSGs) are members of the immunoglobulin superfamily and are closely related to the predominantly membrane-bound CEACAM proteins. PSGs are produced by placental trophoblasts and secreted into the maternal bloodstream at high levels where they may regulate maternal immune and vascular functions through receptor binding and modulation of cytokine and chemokine expression and activity. PSGs may have autocrine and paracrine functions in the placental bed, and PSGs can activate soluble and extracellular matrix bound TGF-β, with potentially diverse effects on multiple cell types. PSGs are also found at high levels in the maternal circulation, at least in human, where they may have endocrine functions. In a non-reproductive context, PSGs are expressed in the gastrointestinal tract and their deregulation may be associated with colorectal cancer and other diseases. Like many placental hormones, PSGs are encoded by multigene families and they have an unusual phylogenetic distribution, being found predominantly in species with hemochorial placentation, with the notable exception of the horse in which PSG-like proteins are expressed in the endometrial cups of the epitheliochorial placenta. The evolution and expansion of PSG gene families appears to be a highly active process, with significant changes in gene numbers and protein domain structures in different mammalian lineages, and reports of extensive copy number variation at the human locus. Against this apparent diversification, the available evidence indicates extensive conservation of PSG functions in multiple species. These observations are consistent with maternal-fetal conflict underpinning the evolution of PSGs.


Reproduction ◽  
2022 ◽  
Author(s):  
Fernanda L. de la Cruz Borthiry ◽  
Julieta Schander ◽  
Maximiliano Cella ◽  
Jimena S. Beltrame ◽  
Ana María Franchi ◽  
...  

Aim: Implantation-related events are crucial for pregnancy success. In particular, defects in vascular remodeling at the maternal-fetal interface are associated with spontaneous miscarriage and recurrent pregnancy loss. Physical activity and therapies oriented to reduce stress improve pregnancy outcomes. In animal models, environmental stimulation and enrichment are associated with enhanced well-being, cognitive function and stress resilience. Here we studied whether exposure of BALB/c mice to an enriched environment (EE) regulates crucial events during early gestation at the maternal-fetal interface. Method: Pregnant BALB/c mice were exposed to the EE that combines non-invasive stimuli from the sensory pathway with voluntary physical activity. The pregnancy rate was evaluated. Implantation sites were investigated microscopically and macroscopically. Vascular adaptation parameters at the maternal-fetal interface were analyzed. Results: We found that exposure to the EE prevented pregnancy loss between gestational days 7 and 15. Also, it increased the diameter of the uterine artery and decreased the wall:lumen ratio of the mesometrial decidual vessels, suggesting that EE exposure promotes vascular remodeling. Moreover, it increased nitric oxide synthase activity and inducible nitric oxide synthase expression, as well as prostaglandin F2α production and endoglin expression in the implantation sites. Conclusion: Exposure of pregnant females to the EE regulates uterine physiology, promoting vascular remodeling during early gestation. These adaptations might contribute to preventing embryo loss. Our results highlight the importance of the maternal environment for pregnancy success. The design of an “EE-like” protocol for humans could be considered as a new non-pharmacologic strategy to prevent implantation failure and recurrent miscarriage.


Reproduction ◽  
2022 ◽  
Author(s):  
Richard G Lea ◽  
Beatrice Mandon-Pepin ◽  
Benoit Loup ◽  
Elodie Poumerol ◽  
Luc Jouneau ◽  
...  

Exposure of the fetal testis to numerous individual environmental chemicals is frequently associated with dysregulated development, leading to impaired adult reproductive competence. However, ‘real-life’ exposure involves complex mixtures of environmental chemicals (ECs). Here we test the consequences, for the male fetus, of exposing pregnant ewes to EC mixtures derived from pastures treated with biosolids fertiliser (processed human sewage). Fetal testes from continuously exposed ewes were either unaffected at Day 80 or exhibited a reduced area of testis immunostained for CYP17A1 protein at Day 140. Fetal testes from Day 140 pregnant ewes exposed transiently for 80 day periods during early (0-80 days), mid (30-110 days) or late (60-140 days) pregnancy, had fewer Sertoli cells and reduced testicular area stained for CYP17A1. Male fetuses from ewes exposed during late pregnancy also exhibited reduced fetal body, adrenal and testis mass, anogenital distance and lowered testosterone: collectively indicative of an anti-androgenic effect. Exposure limited to early gestation induced more testis transcriptome changes than observed for continuously exposed Day 140 fetuses. These data suggest that a short period of EC exposure does not allow sufficient time for the testis to adapt. Consequently, testicular transcriptomic changes induced during the first 80 days of gestation may equate with phenotypic effects observed at Day 140. In contrast, relatively fewer changes in the testis transcriptome in fetuses exposed continuously to ECs throughout gestation is associated with less severe consequences. Unless corrected by or during puberty, these differential effects would predictably have adverse outcomes for adult testicular function and fertility.


Reproduction ◽  
2021 ◽  
Author(s):  
Zoe Claire Johnston ◽  
Franz S Gruber ◽  
Sean Brown ◽  
Neil R Norcross ◽  
Jason R Swedlow ◽  
...  

Despite recent advances in male reproductive health research, there remain many elements of male (in)fertility where our understanding is incomplete. Consequently, diagnostic tools and treatments for men with sperm dysfunction, other than medically assisted reproduction, are limited. On the other hand, the gaps in our knowledge of the mechanisms which underpin sperm function have hampered the development of male non-hormonal contraceptives. The study of mature spermatozoa is inherently difficult. They are a unique and highly specialised cell type which does not actively transcribe or translate proteins and cannot be cultured for long periods of time or matured in vitro. One, large scale, approach to both increasing understanding of sperm function, and the discovery and development of compounds that can modulate sperm function, is to directly observe responses to compounds with phenotypic screening techniques. These target agnostic approaches can be developed into high-throughput screening platforms with the potential to drastically increase advances in the field. Here we discuss the rationale and development of high-throughput phenotypic screening platforms for mature human spermatozoa, and the multiple potential applications these present, as well as the current limitations and leaps in our understanding and capabilities needed to overcome them. Further development and use of these technologies could lead to the identification of compounds which positively or negatively affect sperm cell motility or function, or novel platforms for toxicology or environmental chemical testing among other applications. Ultimately, each of these potential applications is also likely to increase understanding within the field of sperm biology.


Reproduction ◽  
2021 ◽  
Vol 162 (6) ◽  
pp. R85-R98
Author(s):  
Sophia Han ◽  
Charlotte C Ellberg ◽  
Isoken N Olomu ◽  
Arpita K Vyas

A growing body of research suggests that alterations to the human microbiome are associated with disease states, including obesity and diabetes. During pregnancy, these disease states are associated with maternal microbial dysbiosis. This review discusses the current literature regarding the typical maternal and offspring microbiome as well as alterations to the microbiome in the context of obesity, type 2 diabetes mellitus, and gestational diabetes mellitus. Furthermore, this review outlines the proposed mechanisms linking associations between the maternal microbiome in the aforementioned disease states and offspring microbiome. Additionally, this review highlights associations between alterations in offspring microbiome and postnatal health outcomes.


Reproduction ◽  
2021 ◽  
Vol 162 (6) ◽  
pp. R99-R109
Author(s):  
Megumi Ibayashi ◽  
Ryutaro Aizawa ◽  
Junichiro Mitsui ◽  
Satoshi Tsukamoto

Lipid droplets (LDs) consist of a core of neutral lipids such as triacylglycerols and cholesteryl esters covered by a phospholipid monolayer. Recent studies have shown that LDs not only store neutral lipids but are also associated with various physiological functions. LDs are found in most eukaryotic cells and vary in size and quantity. It has long been known that mammalian oocytes contain LDs. Porcine and bovine oocytes contain substantial amounts of LDs, which cause their cytoplasm to darken, whereas mouse and human oocytes are translucent due to their low LD content. A sufficient amount of LDs in mammalian oocytes has been thought to be associated with oocyte maturation and early embryonic development, but the necessity of LDs has been questioned because embryonic development proceeds normally even when LDs are removed. However, recent studies have revealed that LDs play a crucial role during implantation and that maintaining an appropriate amount of LDs is important for early embryonic development, even in mammalian species with low amounts of LDs in their oocytes. This suggests that a fine-tuned balance of LD content is essential for successful mammalian embryonic development. In this review, we discuss the physiological importance of LDs in mammalian oocytes and preimplantation embryos based on recent findings on LD biology.


Reproduction ◽  
2021 ◽  
Vol 162 (6) ◽  
pp. 449-460
Author(s):  
Zixi Chen ◽  
Yali Shan ◽  
Xingji You ◽  
Hang Gu ◽  
Chen Xu ◽  
...  

The nucleotide binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome plays a critical role in various inflammatory diseases. We sought to investigate the role of NLRP3 inflammasome in uterine activation for labor at term and preterm. We found that NLRP3 inflammasome was activated in the myometrium tissues obtained from the pregnant women undergoing labor at term (TL) compared with those not undergoing labor (TNL) at term. NLRP3 inflammasome was also activated in amnion and chorion-deciduas in TL and preterm labor (PTL) groups. In the mouse model, uterine NLRP3 inflammasome and nuclear factor kappaB (NF-κB) were activated toward term and during labor. Treatment of pregnant mice with lipopolysaccharide (LPS) and RU38486 induced preterm birth (PTB) and also promoted uterine NLRP3 inflammasome and NF-κB activation. Treatment of pregnant mice with NLRP3 inflammasome inhibitor BAY11-7082 and MCC950 delayed the onset of labor and suppressed NLRP3 inflammasome and NF-κB activation in uterus. MCC950 postponed labor onset of the mice with LPS and RU38486 treatment and inhibited NLRP3 inflammasome activation in uterus. Our data provide the evidence that NLRP3 inflammasome is involved in uterine activation for labor onset in term and PTB in humans and mouse model.


Reproduction ◽  
2021 ◽  
Author(s):  
Kacie A Norton ◽  
Ross Humphreys ◽  
Chelsey Weatherill ◽  
Kevin Duong ◽  
Vivian V Nguyen ◽  
...  

Defects in spermatogenesis are an important cause of male infertility. Multiple aspects of spermatogenesis are controlled by chromatin remodelers, including regulating transcription. We previously described mutations in chromatin remodeling gene Cecr2 that resulted in the lethal neural tube defect exencephaly in most mutant mice, and subfertility in mice that were non-penetrant for exencephaly. Here, we show that the severity of male subfertility is dependent on age. Cecr2GT/Del males contain two mutant alleles, one of which is hypomorphic and therefore produces a small amount of protein. These males sire the fewest pups just after sexual maturity (88% fewer than Cecr2+/+ at P42-60) but improve with age (49% fewer than Cecr2+/+ at P81-100), although never completely recovering to Cecr2+/+ (wild type) levels. When young, they also have defects in testis histology, in vivo fertilization frequency, sperm number and motility, and testis weight that show similar improvement with age. Immunostaining of staged seminiferous tubules showed CECR2 in type A, In and B spermatogonia, and less in preleptotene and leptotene spermatocytes. Histological defects were first apparent in Cecr2GT/Del testes at P24, and RNA-seq analysis revealed 387 differentially expressed genes. This included 66 genes on the X chromosome (almost double the number on any other chromosome), all more highly expressed in Cecr2GT/Del testes. This inappropriate expression of X chromosome genes could be caused by a failure of effective meiotic sex chromosome inactivation. We identify several abnormally expressed genes that may contribute to defects in spermatogenesis at P24. Our results support a role for Cecr2 in juvenile spermatogenesis.


Sign in / Sign up

Export Citation Format

Share Document