scholarly journals ATP for the DNA Ligation Step in Base Excision Repair Is Generated from Poly(ADP-ribose)

2000 ◽  
Vol 275 (30) ◽  
pp. 23234-23239 ◽  
Author(s):  
Shiao Li Oei ◽  
Mathias Ziegler
2022 ◽  
Author(s):  
Qun Tang ◽  
Robert McKenna ◽  
Melike Caglayan

DNA ligase I (LIG1) catalyzes final ligation step following DNA polymerase (pol) β gap filling and an incorrect nucleotide insertion by polβ creates a nick repair intermediate with mismatched end at the downstream steps of base excision repair (BER) pathway. Yet, how LIG1 discriminates against the mutagenic 3'-mismatches at atomic resolution remains undefined. Here, we determined X-ray structures of LIG1/nick DNA complexes with G:T and A:C mismatches and uncovered the ligase strategies that favor or deter ligation of base substitution errors. Our structures revealed that LIG1 active site can accommodate G:T mismatch in a similar conformation with A:T base pairing, while it stays in the LIG1-adenylate intermediate during initial step of ligation reaction in the presence of A:C mismatch at 3'-strand. Moreover, we showed mutagenic ligation and aberrant nick sealing of the nick DNA substrates with 3'-preinserted dG:T and dA:C mismatches, respectively. Finally, we demonstrated that AP-Endonuclease 1 (APE1), as a compensatory proofreading enzyme, interacts and coordinates with LIG1 during mismatch removal and DNA ligation. Our overall findings and ligase/nick DNA structures provide the features of accurate versus mutagenic outcomes at the final BER steps where a multi-protein complex including polβ, LIG1, and APE1 can maintain accurate repair.


2022 ◽  
Author(s):  
Melike Caglayan ◽  
Qun Tang ◽  
Robert McKenna

Abstract DNA ligase I (LIG1) catalyzes final ligation step following DNA polymerase (pol) β gap filling and an incorrect nucleotide insertion by polβ creates a nick repair intermediate with mismatched end at the downstream steps of base excision repair (BER) pathway. Yet, how LIG1 discriminates against the mutagenic 3'-mismatches at atomic resolution remains undefined. Here, we determined X-ray structures of LIG1/nick DNA complexes with G:T and A:C mismatches and uncovered the ligase strategies that favor or deter ligation of base substitution errors. Our structures revealed that LIG1 active site can accommodate G:T mismatch in a similar conformation with A:T base pairing, while it stays in the LIG1-adenylate intermediate during initial step of ligation reaction in the presence of A:C mismatch at 3'-strand. Moreover, we showed mutagenic ligation and aberrant nick sealing of the nick DNA substrates with 3'-preinserted dG:T and dA:C mismatches, respectively. Finally, we demonstrated that AP-Endonuclease 1 (APE1), as a compensatory proofreading enzyme, interacts and coordinates with LIG1 during mismatch removal and DNA ligation. Our overall findings and ligase/nick DNA structures provide the features of accurate versus mutagenic outcomes at the final BER steps where a multi-protein complex including polβ, LIG1, and APE1 can maintain accurate repair.


2002 ◽  
Vol 75 (5) ◽  
pp. 507 ◽  
Author(s):  
Katherine J. Kim ◽  
Indraneel Chakrabarty ◽  
Guang-Zhi Li ◽  
Sabine Grösch ◽  
Bernd Kaina ◽  
...  

Author(s):  
Richarda de Voer ◽  
Paul W Doetsch ◽  
Roland Kuiper ◽  
Barbara Rivera

2018 ◽  
Vol 482 (1) ◽  
pp. 96-100
Author(s):  
E. Belousova ◽  
◽  
M. Kutuzov ◽  
P. Ivankina ◽  
A. Ishchenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document