base substitution
Recently Published Documents


TOTAL DOCUMENTS

615
(FIVE YEARS 146)

H-INDEX

54
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Qun Tang ◽  
Robert McKenna ◽  
Melike Caglayan

DNA ligase I (LIG1) catalyzes final ligation step following DNA polymerase (pol) β gap filling and an incorrect nucleotide insertion by polβ creates a nick repair intermediate with mismatched end at the downstream steps of base excision repair (BER) pathway. Yet, how LIG1 discriminates against the mutagenic 3'-mismatches at atomic resolution remains undefined. Here, we determined X-ray structures of LIG1/nick DNA complexes with G:T and A:C mismatches and uncovered the ligase strategies that favor or deter ligation of base substitution errors. Our structures revealed that LIG1 active site can accommodate G:T mismatch in a similar conformation with A:T base pairing, while it stays in the LIG1-adenylate intermediate during initial step of ligation reaction in the presence of A:C mismatch at 3'-strand. Moreover, we showed mutagenic ligation and aberrant nick sealing of the nick DNA substrates with 3'-preinserted dG:T and dA:C mismatches, respectively. Finally, we demonstrated that AP-Endonuclease 1 (APE1), as a compensatory proofreading enzyme, interacts and coordinates with LIG1 during mismatch removal and DNA ligation. Our overall findings and ligase/nick DNA structures provide the features of accurate versus mutagenic outcomes at the final BER steps where a multi-protein complex including polβ, LIG1, and APE1 can maintain accurate repair.


2022 ◽  
Author(s):  
Melike Caglayan ◽  
Qun Tang ◽  
Robert McKenna

Abstract DNA ligase I (LIG1) catalyzes final ligation step following DNA polymerase (pol) β gap filling and an incorrect nucleotide insertion by polβ creates a nick repair intermediate with mismatched end at the downstream steps of base excision repair (BER) pathway. Yet, how LIG1 discriminates against the mutagenic 3'-mismatches at atomic resolution remains undefined. Here, we determined X-ray structures of LIG1/nick DNA complexes with G:T and A:C mismatches and uncovered the ligase strategies that favor or deter ligation of base substitution errors. Our structures revealed that LIG1 active site can accommodate G:T mismatch in a similar conformation with A:T base pairing, while it stays in the LIG1-adenylate intermediate during initial step of ligation reaction in the presence of A:C mismatch at 3'-strand. Moreover, we showed mutagenic ligation and aberrant nick sealing of the nick DNA substrates with 3'-preinserted dG:T and dA:C mismatches, respectively. Finally, we demonstrated that AP-Endonuclease 1 (APE1), as a compensatory proofreading enzyme, interacts and coordinates with LIG1 during mismatch removal and DNA ligation. Our overall findings and ligase/nick DNA structures provide the features of accurate versus mutagenic outcomes at the final BER steps where a multi-protein complex including polβ, LIG1, and APE1 can maintain accurate repair.


2022 ◽  
Author(s):  
Baskar Ramamurthy ◽  
Shashi Bhushan ◽  
Amit Kumar Singh ◽  
Yogendra Thakur

In the model plant Arabidopsis thaliana, parental age is known to affect somatic mutation rates in their immediate progeny but it is not clear if this age-associated effect on mutation rates persist across successive generations. Using a set of detector lines carrying the mutated uidA gene, we examined if a particular parental age maintained across five consecutive generations affected the rates of base substitution (BSR), intrachromosomal recombination (ICR), frameshift mutation (FS), and transposition. The frequency of functional GUS (blue colored spots) reversions were examined in seedlings as a function of identical/different parental ages across generations. When parental age remained constant, no change was observed in BSR/ICR rates in the first three generations, following which it drops significantly in the 4th and in most instances, is elevated in the 5th generation. On the other hand, with advancing parental age, BSR/ICR rates respectively remained high in the first two/three generations with a striking resemblance in the pattern of mutation rates. We followed a novel approach of identifying and tagging flowers pollinated on a particular day, thereby avoiding possible emasculation induced stress responses, as it may influence mutation rates. By and large there is no correlation in the expression of candidate genes involved in DNA repair to the pattern of reversion events and possibly, the expression patterns may correspond to the genomewide somatic mutations rates. Our results suggest a time component in counting the number of generations a plant has passed through self-fertilization at a particular age in determining the somatic mutation rates.


2022 ◽  
Vol 11 ◽  
Author(s):  
Mingming Hu ◽  
Jinjing Tan ◽  
Zhentian Liu ◽  
Lifeng Li ◽  
Hongmei Zhang ◽  
...  

BackgroundYoung lung cancer as a small subgroup of lung cancer has not been fully studied. Most of the previous studies focused on the clinicopathological features, but studies of molecular characteristics are still few and limited. Here, we explore the characteristics of prognosis and variation in young lung cancer patients with NSCLC.MethodsA total of 5639 young lung cancer samples (NSCLC, age ≤40) were screened from the SEER and the same number of the old (NSCLC, age ≥60) were screened by propensity score matching to evaluate the prognosis of two groups. 165 treatment-naïve patients diagnosed with NSCLC were enrolled to explore the molecular feature difference between two age-varying groups. CCLE cell line expression data was used to verify the finding from the cohort of 165 patients.ResultsThe overall survival of the young lung cancer group was significantly better than the old. Germline analysis showed a trend that the young group contained a higher incidence of germline alterations. The TMB of the young group was lower. Meanwhile, the heterogeneity and evolutionary degrees of the young lung cancer group were also lower than the old. The mutation spectrums of two groups exhibited variance with LRP1B, SMARCA4, STK11, FAT2, RBM10, FANCM mutations, EGFR L858R more recurrent in the old group and EML4-ALK fusions, BCL2L11 deletion polymorphism, EGFR 19DEL, 20IN more recurrent in the young group. For the base substitution, the young showed a lower fraction of transversion. Further, we performed a pathway analysis and found the EGFR tyrosine kinase inhibitor resistance pathway enriched in the young lung cancer group, which was validated in gene expression data later.ConclusionsThere were significantly different molecular features of the young lung cancer group. The young lung cancer group had a more simple alteration structure. Alteration spectrums and base substitution types varied between two groups, implying the different pathogenesis. The young lung cancer group had more potential treatment choices. Although young lung patients had better outcomes, there were still adverse factors of them, suggesting that the young group still needs more caution for treatment choice and monitoring after the treatment to further improve the prognosis.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Dan Chen ◽  
Judit Z. Gervai ◽  
Ádám Póti ◽  
Eszter Németh ◽  
Zoltán Szeltner ◽  
...  

AbstractDefects in BRCA1, BRCA2 and other genes of the homology-dependent DNA repair (HR) pathway cause an elevated rate of mutagenesis, eliciting specific mutation patterns including COSMIC signature SBS3. Using genome sequencing of knock-out cell lines we show that Y family translesion synthesis (TLS) polymerases contribute to the spontaneous generation of base substitution and short insertion/deletion mutations in BRCA1 deficient cells, and that TLS on DNA adducts is increased in BRCA1 and BRCA2 mutants. The inactivation of 53BP1 in BRCA1 mutant cells markedly reduces TLS-specific mutagenesis, and rescues the deficiency of template switch–mediated gene conversions in the immunoglobulin V locus of BRCA1 mutant chicken DT40 cells. 53BP1 also promotes TLS in human cellular extracts in vitro. Our results show that HR deficiency–specific mutagenesis is largely caused by TLS, and suggest a function for 53BP1 in regulating the choice between TLS and error-free template switching in replicative DNA damage bypass.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
John K. L. Wong ◽  
Christian Aichmüller ◽  
Markus Schulze ◽  
Mario Hlevnjak ◽  
Shaymaa Elgaafary ◽  
...  

AbstractCancer driving mutations are difficult to identify especially in the non-coding part of the genome. Here, we present sigDriver, an algorithm dedicated to call driver mutations. Using 3813 whole-genome sequenced tumors from International Cancer Genome Consortium, The Cancer Genome Atlas Program, and a childhood pan-cancer cohort, we employ mutational signatures based on single-base substitution in the context of tri- and penta-nucleotide motifs for hotspot discovery. Knowledge-based annotations on mutational hotspots reveal enrichment in coding regions and regulatory elements for 6 mutational signatures, including APOBEC and somatic hypermutation signatures. APOBEC activity is associated with 32 hotspots of which 11 are known and 11 are putative regulatory drivers. Somatic single nucleotide variants clusters detected at hypermutation-associated hotspots are distinct from translocation or gene amplifications. Patients carrying APOBEC induced PIK3CA driver mutations show lower occurrence of signature SBS39. In summary, sigDriver uncovers mutational processes associated with known and putative tumor drivers and hotspots particularly in the non-coding regions of the genome.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Iliyas Rashid ◽  
Melina Campos ◽  
Travis Collier ◽  
Marc Crepeau ◽  
Allison Weakley ◽  
...  

AbstractUsing high-depth whole genome sequencing of F0 mating pairs and multiple individual F1 offspring, we estimated the nuclear mutation rate per generation in the malaria vectors Anopheles coluzzii and Anopheles stephensi by detecting de novo genetic mutations. A purpose-built computer program was employed to filter actual mutations from a deep background of superficially similar artifacts resulting from read misalignment. Performance of filtering parameters was determined using software-simulated mutations, and the resulting estimate of false negative rate was used to correct final mutation rate estimates. Spontaneous mutation rates by base substitution were estimated at 1.00 × 10−9 (95% confidence interval, 2.06 × 10−10—2.91 × 10−9) and 1.36 × 10−9 (95% confidence interval, 4.42 × 10−10—3.18 × 10−9) per site per generation in A. coluzzii and A. stephensi respectively. Although similar studies have been performed on other insect species including dipterans, this is the first study to empirically measure mutation rates in the important genus Anopheles, and thus provides an estimate of µ that will be of utility for comparative evolutionary genomics, as well as for population genetic analysis of malaria vector mosquito species.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Yong Ho Kim ◽  
Sarah H. Warren ◽  
Ingeborg Kooter ◽  
Wanda C. Williams ◽  
Ingrid J. George ◽  
...  

Abstract Background Open burning of anthropogenic sources can release hazardous emissions and has been associated with increased prevalence of cardiopulmonary health outcomes. Exposure to smoke emitted from burn pits in military bases has been linked with respiratory illness among military and civilian personnel returning from war zones. Although the composition of the materials being burned is well studied, the resulting chemistry and potential toxicity of the emissions are not. Methods Smoke emission condensates from either flaming or smoldering combustion of five different types of burn pit-related waste: cardboard; plywood; plastic; mixture; and mixture/diesel, were obtained from a laboratory-scale furnace coupled to a multistage cryotrap system. The primary emissions and smoke condensates were analyzed for a standardized suite of chemical species, and the condensates were studied for pulmonary toxicity in female CD-1 mice and mutagenic activity in Salmonella (Ames) mutagenicity assay using the frameshift strain TA98 and the base-substitution strain TA100 with and without metabolic activation (S9 from rat liver). Results Most of the particles in the smoke emitted from flaming and smoldering combustion were less than 2.5 µm in diameter. Burning of plastic containing wastes (plastic, mixture, or mixture/diesel) emitted larger amounts of particulate matter (PM) compared to other types of waste. On an equal mass basis, the smoke PM from flaming combustion of plastic containing wastes caused more inflammation and lung injury and was more mutagenic than other samples, and the biological responses were associated with elevated polycyclic aromatic hydrocarbon levels. Conclusions This study suggests that adverse health effects of burn pit smoke exposure vary depending on waste type and combustion temperature; however, burning plastic at high temperature was the most significant contributor to the toxicity outcomes. These findings will provide a better understanding of the complex chemical and combustion temperature factors that determine toxicity of burn pit smoke and its potential health risks at military bases.


Sign in / Sign up

Export Citation Format

Share Document