scholarly journals Induction of Cancerous Stem Cells during Embryonic Stem Cell Differentiation

2012 ◽  
Vol 287 (44) ◽  
pp. 36777-36791 ◽  
Author(s):  
Hiroaki Fujimori ◽  
Mima Shikanai ◽  
Hirobumi Teraoka ◽  
Mitsuko Masutani ◽  
Ken-ichi Yoshioka
Author(s):  
Lulu Li ◽  
Rene Schloss ◽  
Noshir Langrana ◽  
Martin Yarmush

Pluripotent embryonic stem cells represent a promising renewable cell source to generate a variety of differentiated cell types. Although many investigators have described techniques to effectively differentiate stem cells into different mature cell lineages, their practicality is limited by the absence of large scale processing consideration and low yields of differentiated cells. Previously we have established a murine embryonic stem cell alginate-poly-l-lysine microencapsulation differentiation system. The three-dimensional alginate microenvironment maintains cell viability, is conducive to ES cell differentiation to hepatocyte lineage cells, and maintains differentiated cellular function. In the present work, we demonstrate that hepatocyte differentiation is mediated by cell-cell aggregation in the encapsulation microenvironment. Both cell aggregation and hepatocyte functions, such as urea and albumin secretion, as well as increased expression of cytokaratin 18 and cyp4507a, occur concomitantly with surface E-cadherin expression. Furthermore, by incorporating soluble inducers, such as retinoic acid, into the permeable microcapsule system, we demonstrate decreased cell aggregation and enhanced neuronal lineage differentiation with the expression of various neuronal specific markers, including neurofilament, A2B5, O1 and GFAP. Therefore, as a result of capsule parameter and microenvironment manipulation, we are capable of targeting cellular differentiation to both endodermal and ectodermal cell lineages.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Cree Chamberland ◽  
Almudena Martinez-Fernandez ◽  
Rosanna Beraldi ◽  
Timothy J. Nelson

Regenerative medicine offers a curative approach to treating heart disease through multiple emerging therapeutic concepts. Decellularized organ scaffolds are being optimized to guide and spatially organize stem cell differentiation in efforts to rebuild functional tissues. Additionally, pluripotent stem cells offer a transformative cell source to differentiate into the full spectrum of cellular building blocks. Adult cardiac tissues have been used as extracellular scaffolds as a proof of principle; however, matching the developmental stages of embryonic scaffold with primitive cardiac progenitors may be used to optimize the differentiation and maturation of bioengineered cardiac tissues. Our novel approach uses embryo-derived decellularized hearts as scaffolds to promote embryonic stem cell differentiation. Further, we determined that agitation with 0.25% sodium dodecyl sulfate (SDS) solution was the most effective protocol to maintain matrix integrity while eliminating endogenous cells. The scaffolds were successfully reseeded with different cellular sources derived from pluripotent stem cells to achieve beating cardiac tissues characterized by endothelial, cardiac, and smooth muscle markers. Therefore, embedding stem cells within a tissue-specific environment matched to the developmental stage of the progenitors may offer a practical solution for stem-cell-derived applications such as disease modeling, pharmaceutical safety testing, and screening of novel therapeutic targets.


Sign in / Sign up

Export Citation Format

Share Document