Cell Differentiation
Recently Published Documents


TOTAL DOCUMENTS

17947
(FIVE YEARS 5746)

H-INDEX

247
(FIVE YEARS 66)

2021 ◽  
Vol 12 ◽  
Author(s):  
Xue Li ◽  
Qin Zeng ◽  
Shuyi Wang ◽  
Mengyuan Li ◽  
Xionghui Chen ◽  
...  

Store-operated Ca2+ release-activated Ca2+ (CRAC) channel is the main Ca2+ influx pathway in lymphocytes and is essential for immune response. Lupus nephritis (LN) is an autoimmune disease characterized by the production of autoantibodies due to widespread loss of immune tolerance. In this study, RNA-seq analysis revealed that calcium transmembrane transport and calcium channel activity were enhanced in naive B cells from patients with LN. The increased expression of ORAI1, ORAI2, and STIM2 in naive B cells from patients with LN was confirmed by flow cytometry and Western blot, implying a role of CRAC channel in B-cell dysregulation in LN. For in vitro study, CRAC channel inhibition by YM-58483 or downregulation by ORAI1-specific small-interfering RNA (siRNA) decreased the phosphorylation of Ca2+/calmodulin-dependent protein kinase2 (CaMK2) and suppressed Blimp-1 expression in primary human B cells, resulting in decreased B-cell differentiation and immunoglobulin G (IgG) production. B cells treated with CaMK2-specific siRNA showed defects in plasma cell differentiation and IgG production. For in vivo study, YM-58483 not only ameliorated the progression of LN but also prevented the development of LN. MRL/lpr lupus mice treated with YM-58483 showed lower percentage of plasma cells in the spleen and reduced concentration of anti-double-stranded DNA antibodies in the sera significantly. Importantly, mice treated with YM-58483 showed decreased immune deposition in the glomeruli and alleviated kidney damage, which was further confirmed in NZM2328 lupus mice. Collectively, CRAC channel controlled the differentiation of pathogenic B cells and promoted the progression of LN. This study provides insights into the pathogenic mechanisms of LN and that CRAC channel could serve as a potential therapeutic target for LN.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Deike J Omnus ◽  
Matthias J Fink ◽  
Klaudia Szwedo ◽  
Kristina Jonas

The highly conserved protease Lon has important regulatory and protein quality control functions in cells from the three domains of life. Despite many years of research on Lon, only a few specific protein substrates are known in most organisms. Here, we used a quantitative proteomics approach to identify novel substrates of Lon in the dimorphic bacterium Caulobacter crescentus. We focused our study on proteins involved in polar cell differentiation and investigated the developmental regulator StaR and the flagella hook length regulator FliK as specific Lon substrates in detail. We show that Lon recognizes these proteins at their C-termini, and that Lon-dependent degradation ensures their temporally restricted accumulation in the cell cycle phase when their function is needed. Disruption of this precise temporal regulation of StaR and FliK levels in a Δlon mutant contributes to defects in stalk biogenesis and motility, respectively, revealing a critical role of Lon in coordinating developmental processes with cell cycle progression. Our work underscores the importance of Lon in the regulation of complex temporally controlled processes by adjusting the concentrations of critical regulatory proteins. Furthermore, this study includes the first characterization of FliK in C. crescentus and uncovers a dual role of the C-terminal amino acids of FliK in protein function and degradation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaojun Ju ◽  
Yifan Liu ◽  
Yanju Shan ◽  
Gaige Ji ◽  
Ming Zhang ◽  
...  

AbstractSART and PMM are mainly composed of oxidative myofibers and glycolytic myofibers, respectively, and myofiber types profoundly influence postnatal muscle growth and meat quality. SART and PMM are composed of lncRNAs and circRNAs that participate in myofiber type regulation. To elucidate the regulatory mechanism of myofiber type, lncRNA and circRNA sequencing was used to systematically compare the transcriptomes of the SART and PMM of Chinese female Qingyuan partridge chickens at their marketing age. The luminance value (L*), redness value (a*), average diameter, cross-sectional area, and density difference between the PMM and SART were significant (p < 0.05). ATPase staining results showed that PMMs were all darkly stained and belonged to the glycolytic type, and the proportion of oxidative myofibers in SART was 81.7%. A total of 5 420 lncRNAs were identified, of which 365 were differentially expressed in the SART compared with the PMM (p < 0.05). The cis-regulatory analysis identified target genes that were enriched for specific GO terms and KEGG pathways (p < 0.05), including striated muscle cell differentiation, regulation of cell proliferation, regulation of muscle cell differentiation, myoblast differentiation, regulation of myoblast differentiation, and MAPK signaling pathway. Pathways and coexpression network analyses suggested that XR_003077811.1, XR_003072304.1, XR_001465942.2, XR_001465741.2, XR_001470487.1, XR_003077673.1 and XR_003074785.1 played important roles in regulating oxidative myofibers by TBX3, QKI, MYBPC1, CALM2, and PPARGC1A expression. A total of 10 487 circRNAs were identified, of which 305 circRNAs were differentially expressed in the SART compared with the PMM (p < 0.05). Functional enrichment analysis showed that differentially expressed circRNAs were involved in host gene expression and were enriched in the AMPK, calcium signaling pathway, FoxO signaling pathway, p53 signaling pathway, and cellular senescence. Novel_circ_004282 and novel_circ_002121 played important roles in regulating oxidative myofibers by PPP3CA and NFATC1 expression. Using lncRNA-miRNA/circRNA-miRNA integrated analysis, we identified many candidate interaction networks that might affect muscle fiber performance. Important lncRNA-miRNA-mRNA networks, such as lncRNA-XR_003074785.1/miR-193-3p/PPARGC1A, regulate oxidative myofibers. This study reveals that lncXR_003077811.1, lncXR_003072304.1, lncXR_001465942.2, lncXR_001465741.2, lncXR_001470487.1, lncXR_003077673.1, XR_003074785.1, novel_circ_004282 and novel_circ_002121 might regulate oxidative myofibers. The lncRNA-XR_003074785.1/miR-193-3p/PPARGC1A pathway might regulate oxidative myofibers. All these findings provide rich resources for further in-depth research on the regulatory mechanism of lncRNAs and circRNAs in myofibers.


2021 ◽  
Vol 11 (11) ◽  
pp. 1048
Author(s):  
Sunčica Kapor ◽  
Milica Vukotić ◽  
Tijana Subotički ◽  
Dragoslava Đikić ◽  
Olivera Mitrović Ajtić ◽  
...  

Hydroxyurea (HU) is an antineoplastic agent that functions as an antimetabolite compound by inhibiting the ribonucleotide reductase. HU acts mainly as a cytostatic drug that through DNA replication stress may trigger a premature senescence-like cell phenotype, though its influence on bone marrow-derived mesenchymal stem/stromal cell (BMMSC) functions has not elucidated yet. Our results indicate that HU inhibits the growth of human BMMSC alongside senescence-like changes in both morphology and replicative potential, provokes cell cycle arrest at the S phase without affecting cellular viability and induces the expression of senescence-associated β-galactosidase and p16INK4. Moreover, HU-induced senescent BMMSC, although they did not change MSC markers expression, exhibited reduced capacity osteogenic and adipogenic differentiation. Conversely, HU treatment increased immunoregulatory functions of BMMSC compared with untreated cells and determined by T-cell proliferation. Interestingly, HU did not influence the capacity of BMMSC to induce monocytic myeloid-derived suppressor cells. Thus, these results suggest that HU improves the BMMSC functions on the T-cell inhibition and preserves their interaction with myeloid cell compartment. Mechanistically, BMMSC under HU treatment displayed a downregulation of mTOR and p38 MAPK signaling that may explain the reduced cell differentiation and increased immunomodulation activities. Together, the results obtained in this investigation suggest that HU by inducing senescence-like phenotype of BMMSC influences their cellular differentiation and immunoregulatory functions.


2021 ◽  
Vol 321 (5) ◽  
pp. F559-F571
Author(s):  
Stacy M. Yanofsky ◽  
Courtney M. Dugas ◽  
Akemi Katsurada ◽  
Jiao Liu ◽  
Zubaida Saifudeen ◽  
...  

This study demonstrates angiotensin II exertion of biphasic effects on cell differentiation through distinct mediatory roles of angiotensin II type 1 receptor and type 2 receptor in human induced pluripotent stem cell-derived kidney organoids, providing a novel strategy to establish and further characterize the developmental potential of the human kidney organoids.


2021 ◽  
Vol 11 (12) ◽  
pp. 2367-2374
Author(s):  
Liu Wang ◽  
Shuyuan Li ◽  
Jinsong Wan ◽  
Yuanyuan Li ◽  
Peng Liu

This study intends to assess miRNA-326’s effect on the immune-inflammatory microenvironment and its mechanism in gastric cancer (GC). GC adjacent tissues and tumor tissues were collected to analyze inflammatory factors by immunohistochemistry and ELISA, Est-1 and miRNA-326 level by Western blot or PCR, Th17 cells by flow cytometry. CD4+ T cells were transfected with Est-1 inhibitor, Est-1 mimics, or miR-326 mimics followed by measurement of Th17 differentiation-related genes via gene chips and inflammatory factor release. Inflammatory factors in serum of GC patients were significantly increased and miR-326 was upregulated with decreased Est-1 and unbalanced Th17/Treg cell ratio. miR-326 targeted Est-1 to inhibit its expression. After transfection with Est-1 inhibitor, Th17 differentiation-related genes were upregulated. After transfection with miR-326 mimics, Est-1 level was reduced and inflammation was enhanced with maturation of Th17 cells. In conclusion, miRNA-326 induces Th17 cell differentiation by targeting Est-1, thereby promoting the release of inflammatory factors and inducing immune inflammatory microenvironment.


2021 ◽  
Author(s):  
Thao Nguyen ◽  
Eli Costa ◽  
Tim Deibert ◽  
Jose Reyes ◽  
Felix Keber ◽  
...  

The development of a fertilized egg to an embryo requires the proper temporal control of gene expression. During cell differentiation, timing is often controlled via cascades of transcription factors (TFs). However, in early development, transcription is often inactive, and many TF levels are constant, suggesting that unknown mechanisms govern the observed rapid and ordered onset of gene expression. Here, we find that in early embryonic development, access of maternally deposited nuclear proteins to the genome is temporally ordered via importin affinities, thereby timing the expression of downstream targets. We quantify changes in the nuclear proteome during early development and find that nuclear proteins, such as TFs and RNA polymerases, enter nuclei sequentially. Moreover, we find that the timing of the access of nuclear proteins to the genome corresponds to the timing of downstream gene activation. We show that the affinity of proteins to importin is a major determinant in the timing of protein entry into embryonic nuclei. Thus, we propose a mechanism by which embryos encode the timing of gene expression in early development via biochemical affinities. This process could be critical for embryos to organize themselves before deploying the regulatory cascades that control cell identities.


2021 ◽  
Vol 118 (43) ◽  
pp. e2108376118
Author(s):  
Da-Sol Kuen ◽  
Miso Park ◽  
Heeju Ryu ◽  
Garam Choi ◽  
Young-Hye Moon ◽  
...  

GPCR-Gα protein–mediated signal transduction contributes to spatiotemporal interactions between immune cells to fine-tune and facilitate the process of inflammation and host protection. Beyond this, however, how Gα proteins contribute to the helper T cell subset differentiation and adaptive response have been underappreciated. Here, we found that Gα13 signaling in T cells plays a crucial role in inducing follicular helper T (Tfh) cell differentiation in vivo. T cell–specific Gα13-deficient mice have diminished Tfh cell responses in a cell-intrinsic manner in response to immunization, lymphocytic choriomeningitis virus infection, and allergen challenges. Moreover, Gα13-deficient Tfh cells express reduced levels of Bcl-6 and CXCR5 and are functionally impaired in their ability to adhere to and stimulate B cells. Mechanistically, Gα13-deficient Tfh cells harbor defective Rho-ROCK2 activation, and Rho agonist treatment recuperates Tfh cell differentiation and expression of Bcl-6 and CXCR5 in Tfh cells of T cell–specific Gα13-deficient mice. Conversely, ROCK inhibitor treatment hampers Tfh cell differentiation in wild-type mice. These findings unveil a crucial regulatory role of Gα13-Rho-ROCK axis in optimal Tfh cell differentiation and function, which might be a promising target for pharmacologic intervention in vaccine development as well as antibody-mediated immune disorders.


2021 ◽  
Vol 22 (20) ◽  
pp. 11209
Author(s):  
Hideyasu Shimizu ◽  
Masamichi Hayashi ◽  
Hisayuki Kato ◽  
Mitsuru Nakagawa ◽  
Kazuyoshi Imaizumi ◽  
...  

A woman in her 50s was a super responder to benralizumab administered for the treatment of severe bronchial asthma (BA) with eosinophilic chronic rhinosinusitis with nasal polyp (ECRS) and eosinophilic otitis media (EOM). She exhibited the gradual exacerbation of ECRS/EOM despite good control of BA approximately 1 year after benralizumab initiation. Therefore, the treatment was switched to dupilumab, and the condition of the paranasal sinuses and middle ear greatly improved with the best control of her asthma. The patient reported that her physical condition was the best of her life. However, she developed a pulmonary opacity on chest computed tomography after 6 months. Histological examination of the lung parenchyma and cell differentiation of the bronchoalveolar lavage fluid indicated atypical chronic eosinophilic pneumonia, and treatment was switched to mepolizumab. Similarly to the period of benralizumab treatment, exacerbation of ECRS/EOM reduced her quality of life approximately 10 months after the administration of mepolizumab. Dupilumab was again introduced as a replacement for mepolizumab. The clinical course and consideration of the interaction between inflammatory cells led us to speculate that interleukin-13 could play a key role in the development of ECRS/EOM with severe BA.


Sign in / Sign up

Export Citation Format

Share Document