Evolution in Darwin's Finches: a review of a study on Isla Daphne Major in the Galapagos Archipelago

Zoology ◽  
2003 ◽  
Vol 106 (4) ◽  
pp. 255-259 ◽  
Author(s):  
B ROSEMARYGRANT
Ecography ◽  
2019 ◽  
Vol 42 (10) ◽  
pp. 1636-1647 ◽  
Author(s):  
Lucinda P. Lawson ◽  
John Niedzwiecki ◽  
Kenneth Petren

2010 ◽  
Vol 365 (1543) ◽  
pp. 1065-1076 ◽  
Author(s):  
Peter R. Grant ◽  
B. Rosemary Grant

This study addresses the extent and consequences of gene exchange between populations of Darwin's finches. Four species of ground finches ( Geospiza ) inhabit the small island of Daphne Major in the centre of the Galápagos archipelago. We undertook a study of microsatellite DNA variation at 16 loci in order to quantify gene flow within species owing to immigration and between species owing to hybridization. A combination of pedigrees of observed breeders and assignments of individuals to populations by the program S tructure enabled us to determine the frequency of gene exchange and the island of origin of immigrants in some cases. The relatively large populations of Geospiza fortis and G. scandens receive conspecific immigrants at a rate of less than one per generation. They exchange genes more frequently by rare but repeated hybridization. Effects of heterospecific gene flow from hybridization are not counteracted by lower fitness of the offspring. As a result, the standing genetic variation of the two main resident populations on Daphne Major is enhanced to a greater extent by introgressive hybridization than through breeding with conspecific immigrants. Immigrant G. fuliginosa also breeds with G. fortis . Conspecific immigration was highest in the fourth species, G. magnirostris . This species is much larger than the other three and perhaps for this reason it has not bred with any of them. The source island of most immigrants is probably the neighbouring island of Santa Cruz. Evolutionary change may be inhibited in G. magnirostris by continuing gene flow, but enhanced in G. fortis and G. scandens by introgressive hybridization.


Diversity ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 147
Author(s):  
Mariana Villegas ◽  
Catherine Soos ◽  
Gustavo Jiménez-Uzcátegui ◽  
Shukri Matan ◽  
Keith A. Hobson

Darwin’s finches are a classic example of adaptive radiation involving differential use of dietary resources among sympatric species. Here, we apply stable isotope (δ13C, δ15N, and δ2H) analyses of feathers to examine ecological segregation among eight Darwin’s finch species in Santa Cruz Island, Galápagos collected from live birds and museum specimens (1962–2019). We found that δ13C values were higher for the granivorous and herbivorous foraging guilds, and lower for the insectivorous finches. Values of δ15N were similar among foraging guilds but values of δ2H were higher for insectivores, followed by granivores, and lowest for herbivores. The herbivorous guild generally occupied the largest isotopic standard ellipse areas for all isotopic combinations and the insectivorous guild the smallest. Values of δ2H provided better trophic discrimination than those of δ15N possibly due to confounding influences of agricultural inputs of nitrogen. Segregation among guilds was enhanced by portraying guilds in three-dimensional isotope (δ13C, δ15N, and δ2H) space. Values of δ13C and δ15N were higher for feathers of museum specimens than for live birds. We provide evidence that Darwin’s finches on Santa Cruz Island tend to be generalists with overlapping isotopic niches and suggest that dietary overlap may also be more considerable than previously thought.


Sign in / Sign up

Export Citation Format

Share Document