An algebraic approach to calculating rotation-vibration spectra of polyatomic molecules

1992 ◽  
Vol 77 (4) ◽  
pp. 697-708 ◽  
Author(s):  
Anne B. McCoy ◽  
Edwin L. Sibert

Second quantization (SQ) concepts were introduced in chapter 2 as a general tool to treat excitations in molecular collisions for which the dynamics were described in cartesian coordinates. This SQ-formulation, which was derived from the TDGH representation of the wave function, could be introduced if the potential was expanded locally to second order around the position defined by a trajectory. It is, however, possible to use the SQ approach in a number of other dynamical situations, as for instance when dealing with the vibrational excitation of diatomic and polyatomic molecules, or with energy transfer to solids and chemical reactions in the socalled reaction path formulation. Since the formal expressions in the operators are the same, irrespective of the system or dynamical situation, the algebraic manipulations are also identical, and, hence, the formal solution the same. But the dynamical input to the scheme is of course different from case to case. In the second quantization formulation of the dynamical problems, one solves the operator algebraic equations formally. Once the formal solution is obtained, we can compute the dynamical quantities which enter the expressions. The advantage over state or grid expansion methods is significant since (at least for bosons) the number of dynamical operators is much less than the number of states. In order to solve the problem to infinite order, that is, also the TDSE for the system, the operators have to form a closed set with respect to commutations. This makes it necessary to drop some two-quantum operators. Historically, the M = 1 quantum problem, namely that of a linearly forced harmonic oscillator, was solved using the operator algebraic approach by Pechukas and Light in 1966 [131]. In 1972, Kelley [128] solved the two-oscillator (M = 2) problem and the author solved the M = 3 and the general problem in 1978 [129] and 1980 [147], respectively. The general case was solved using graph theory designed for the problem and it will not be repeated here. But the formulas are given in this chapter and in the appendices B and C.


1983 ◽  
Vol 79 (6) ◽  
pp. 2515-2536 ◽  
Author(s):  
O. S. van Roosmalen ◽  
F. Iachello ◽  
R. D. Levine ◽  
A. E. L. Dieperink

Sign in / Sign up

Export Citation Format

Share Document