wave function
Recently Published Documents


TOTAL DOCUMENTS

4537
(FIVE YEARS 671)

H-INDEX

106
(FIVE YEARS 9)

Author(s):  
Victor Barrera-Figueroa ◽  
Vladimir S. Rabinovich ◽  
Samantha Ana Cristina Loredo-Ramı́rez

Abstract The work is devoted to the asymptotic and numerical analysis of the wave function propagating in two-dimensional quantum waveguides with confining potentials supported on slowly varying tubes. The leading term of the asymptotics of the wave function is determined by an adiabatic approach and the WKB approximation. Unlike other similar studies, in the present work we consider arbitrary bounded potentials and obtain exact solutions for the thresholds, and for the transverse modes in the form of power series of the spectral parameter. Our approach leads to an effective numerical method for the analysis of such quantum waveguides and for the tunnel effect observed in sections of the waveguide that shrink or widen too much. Several examples of interest show the applicability of the method.


Author(s):  
Leonardo Chiatti ◽  
Ignazio Licata

A theoretical description of quantum jumps at the level of elementary particles is proposed, based on a micro-cosmological interpretation of their de Broglie phase. The third quantization formalism proposed in current literature for the description of baby universes in quantum cosmology is used here to describe the breakdown of unitarity in the transition from the pre-jump to the post-jump wave function. The corpuscular aspect manifested by the particle in the micro-interaction that originates the jump is represented by a pair of evanescent "micro-universes", respectively pre- and post-jump, connected by a wormhole. The latter represents the actual implementation of the interaction that leads to the projection on the outgoing state; this interaction is always local, even when the selected outgoing state is entangled. Therefore, the decoherence which leads to the emergence of classicality is originated by the same fundamental interactions of the Standard Model involved in the unitary evolution of the wave function. The objective nature of the reduction process admits implications on the possibility of using the formalism in the cosmological context, which are briefly discussed.


2022 ◽  
Author(s):  
Josep Planelles

This is a lecture notes for undergraduate students. We try to tackle the single valuedness of spatial and double valuedness of spin functions. Also, we adress the need of spinors to accommodate spin functions with some parallelism to the need of axial vectors (or antisymmetric traceless tensors) to accommodate angular momentum. Finally, we revisit the Dirac and Weyl tricks on the non-equivalence of a 2 pi and a 4 pi rotation related the topology of rotation and unitary groups.


Author(s):  
Ofir Flom ◽  
Asher Yahalom ◽  
Jacob Levitan ◽  
Haggai Zilberberg

We study the connection between the phase and the amplitude of the wave function and the conditions under which this relationship exists. For this we use model of particle in a box. We have shown that the amplitude can be calculated from the phase and vice versa if the log Analytical uncertainty relations are satisfied.


2022 ◽  
Vol 130 (3) ◽  
pp. 414
Author(s):  
Р.М. Архипов ◽  
М.В. Архипов ◽  
А.В. Пахомов ◽  
Н.Н. Розанов

The Migdal sudden perturbation approximation is used to solve the problem of excitation and ionization particles in a one-dimensional potential of zero radius with an extremely short pulse. There is has only one energy level in such a one-dimensional the delta-shaped potential well. It is shown that for pulse durations shorter than the characteristic period of oscillations of the wave function of the particle in the bound state, the population of the level (and the probability of ionization) is determined by the ratio of the electric the area of ​​the pulse to the characteristic “scale” of the area inversely proportional to the area of ​​localization of the particle in a bound state.


2022 ◽  
Vol 258 ◽  
pp. 04006
Author(s):  
Miguel Ángel Escobedo ◽  
Tuomas Lappi

We study exclusive quarkonium production in the dipole picture at next-to-leading order (NLO) accuracy, using the non-relativistic expansion for the quarkonium wavefunction. The quarkonium light cone wave functions needed in the dipole picture have typically been available only at tree level, either in phenomenological models or in the nonrelativistic limit. Here, we discuss the compatibility of the dipole approach and the non-relativistic expansion and compute NLO relativistic corrections to the quarkonium light-cone wave function in light-cone gauge.


2022 ◽  
Vol 19 (1 Jan-Jun) ◽  
Author(s):  
Syella Ayunisa Rani ◽  
Heru Kuswanto ◽  
Himawan Putranta ◽  
Aditya Yoga Purnama ◽  
Wipsar Sunu Brams Dwandaru

This study aims to find equations and simulations that satisfy the characteristics of graphene’s energy dispersion and identify misconceptions that may occur. Here we give students nine articles about graphene’s dispersion energy. They were asked to identify the equations, parameters, and software used in each of the articles. The assignment was then to make the distribution of the data in a spreadsheet. The parameters used were the lattice constant of 2.46 Å, the range of the k wave function for the x and y axes of -2πa to 2πa, and the interval for each range of 0.1. Each equation is divided into two parts, E(+) and E(-). The analysis was carried out by making a slice in the middle of the x and y axes, as well as the main and off-diagonals. Graphene has Dirac points where the band gap is zero. This means that there is no distance or very small distance between the valence and conduction bands. From this activity, it can be concluded that Rozhkov (2016) has the equations and simulations that best satisfy graphene’s dispersion energy. Misconceptions occur in almost all existing equations and simulations.


Author(s):  
S. Haman Adama ◽  
D. Nga Ongodo ◽  
A. Zarma ◽  
J. M. Ema’a Ema’a ◽  
P. Ele Abiama ◽  
...  

In this work, Bohr Hamiltonian is used to explain the behavior of triaxial nuclei. A new potential, called Morse plus screened Kratzer potential, has been developed for the [Formula: see text]-part with [Formula: see text] fixed at [Formula: see text]. The Extended Nikiforov–Uvarov method involving Confluent Heun functions is used to derive the wave function and energy expression. The electric quadrupole transition rates and energy spectrum of platinum [Formula: see text] are determined and compared with the experimental data and some theoretical results.


Sign in / Sign up

Export Citation Format

Share Document