Lie Nilpotent Group Algebras and Upper Lie Codimension Subgroups

2006 ◽  
Vol 34 (10) ◽  
pp. 3859-3873 ◽  
Author(s):  
Francesco Catino ◽  
Ernesto Spinelli
2014 ◽  
Vol 13 (07) ◽  
pp. 1450044 ◽  
Author(s):  
Harish Chandra ◽  
Meena Sahai

Let K be a field of characteristic p > 0 and let G be an arbitrary group. In this paper, we classify group algebras KG which are strongly Lie nilpotent of index at most 8. We also show that for k ≤ 6, KG is strongly Lie nilpotent of index k if and only if it is Lie nilpotent of index k.


1981 ◽  
Vol 33 (4) ◽  
pp. 901-914 ◽  
Author(s):  
I. M. Musson

If G is a polycyclic group and k an absolute field then every irreducible kG-module is finite dimensional [10], while if k is nonabsolute every irreducible module is finite dimensional if and only if G is abelian-by-finite [3]. However something more can be said about the infinite dimensional irreducible modules. For example P. Hall showed that if G is a finitely generated nilpotent group and V an irreducible kG-module, then the image of kZ in EndkGV is algebraic over k [3]. Here Z = Z(G) denotes the centre of G. It follows that the restriction Vz of V to Z is generated by finite dimensional kZ-modules. In this paper we prove a generalization of this result to polycyclic group algebras.We introduce some terminology.


2019 ◽  
Vol 18 (09) ◽  
pp. 1950163
Author(s):  
Meena Sahai ◽  
Bhagwat Sharan

Let [Formula: see text] be an arbitrary group and let [Formula: see text] be a field of characteristic [Formula: see text]. In this paper, we give some improvements of the upper bound of the lower Lie nilpotency index [Formula: see text] of the group algebra [Formula: see text]. We also give improved bounds for [Formula: see text], where [Formula: see text] is the number of independent generators of the finite abelian group [Formula: see text]. Furthermore, we give a description of the Lie nilpotent group algebra [Formula: see text] with [Formula: see text] or [Formula: see text]. We also show that for [Formula: see text] and [Formula: see text], [Formula: see text] if and only if [Formula: see text], where [Formula: see text] is the upper Lie nilpotency index of [Formula: see text].


2019 ◽  
Vol 23 (3) ◽  
pp. 605-619
Author(s):  
Vitor O. Ferreira ◽  
Jairo Z. Gonçalves ◽  
Javier Sánchez

2019 ◽  
Vol 13 (05) ◽  
pp. 2050088
Author(s):  
Suchi Bhatt ◽  
Harish Chandra ◽  
Meena Sahai

Let [Formula: see text] be a group and let [Formula: see text] be a field of characteristic [Formula: see text]. Lie nilpotent group algebras of strong Lie nilpotency index at most 13 have been classified by many authors. In this paper, our aim is to classify the group algebras [Formula: see text] which are strongly Lie nilpotent of index 14.


1984 ◽  
Vol 25 (2) ◽  
pp. 167-174 ◽  
Author(s):  
Martin Lorenz

Let G be a finitely generated (f.g.) torsion-free nilpotent group. Then the group algebra k[G] of G over a field k is a Noetherian domain and hence has a classical division ring of fractions, denoted by k(G). Recently, the division algebras k(G) and, somewhat more generally, division algebras generated by f.g. nilpotent groups have been studied in [3] and [5]. These papers are concerned with the question to what extent the division algebra determines the group under consideration. Here we continue the study of the division algebras k(G) and investigate their Gelfand–Kirillov (GK–) transcendence degree.


2014 ◽  
Vol 51 (4) ◽  
pp. 547-555 ◽  
Author(s):  
B. Wehrfritz

Let G be a nilpotent group with finite abelian ranks (e.g. let G be a finitely generated nilpotent group) and suppose φ is an automorphism of G of finite order m. If γ and ψ denote the associated maps of G given by \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\gamma :g \mapsto g^{ - 1} \cdot g\phi and \psi :g \mapsto g \cdot g\phi \cdot g\phi ^2 \cdots \cdot \cdot g\phi ^{m - 1} for g \in G,$$ \end{document} then Gγ · kerγ and Gψ · ker ψ are both very large in that they contain subgroups of finite index in G.


1992 ◽  
Vol 45 (3) ◽  
pp. 503-506 ◽  
Author(s):  
R.K. Sharma ◽  
Vikas Bist

Let KG be the group algebra of a group G over a field K of characteristic p > 0. It is proved that the following statements are equivalent: KG is Lie nilpotent of class ≤ p, KG is strongly Lie nilpotent of class ≤ p and G′ is a central subgroup of order p. Also, if G is nilpotent and G′ is of order pn then KG is strongly Lie nilpotent of class ≤ pn and both U(KG)/ζ(U(KG)) and U(KG)′ are of exponent pn. Here U(KG) is the group of units of KG. As an application it is shown that for all n ≤ p+ 1, γn(L(KG)) = 0 if and only if γn(KG) = 0.


Author(s):  
D. L. Harper

In an earlier paper (5) we showed that a finitely generated nilpotent group which is not abelian-by-finite has a primitive irreducible representation of infinite dimension over any non-absolute field. Here we are concerned primarily with the converse question: Suppose that G is a polycyclic-by-finite group with such a representation, then what can be said about G?


Sign in / Sign up

Export Citation Format

Share Document