Rings satisfying every finitely generated module has a Gorenstein projective (pre)envelope

2017 ◽  
Vol 46 (5) ◽  
pp. 2010-2022
Author(s):  
Lixin Mao
2016 ◽  
Vol 60 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Ferran Cedó ◽  
Jan Okniński

AbstractWe show that every finitely generated algebra that is a finitely generated module over a finitely generated commutative subalgebra is an automaton algebra in the sense of Ufnarovskii.


2016 ◽  
Vol 23 (04) ◽  
pp. 701-720 ◽  
Author(s):  
Xiangui Zhao ◽  
Yang Zhang

Differential difference algebras are generalizations of polynomial algebras, quantum planes, and Ore extensions of automorphism type and of derivation type. In this paper, we investigate the Gelfand-Kirillov dimension of a finitely generated module over a differential difference algebra through a computational method: Gröbner-Shirshov basis method. We develop the Gröbner-Shirshov basis theory of differential difference algebras, and of finitely generated modules over differential difference algebras, respectively. Then, via Gröbner-Shirshov bases, we give algorithms for computing the Gelfand-Kirillov dimensions of cyclic modules and finitely generated modules over differential difference algebras.


2019 ◽  
Vol 18 (02) ◽  
pp. 1950035 ◽  
Author(s):  
M. Behboodi ◽  
Z. Fazelpour

We define prime uniserial modules as a generalization of uniserial modules. We say that an [Formula: see text]-module [Formula: see text] is prime uniserial ([Formula: see text]-uniserial) if its prime submodules are linearly ordered by inclusion, and we say that [Formula: see text] is prime serial ([Formula: see text]-serial) if it is a direct sum of [Formula: see text]-uniserial modules. The goal of this paper is to study [Formula: see text]-serial modules over commutative rings. First, we study the structure [Formula: see text]-serial modules over almost perfect domains and then we determine the structure of [Formula: see text]-serial modules over Dedekind domains. Moreover, we discuss the following natural questions: “Which rings have the property that every module is [Formula: see text]-serial?” and “Which rings have the property that every finitely generated module is [Formula: see text]-serial?”.


2012 ◽  
Vol 19 (spec01) ◽  
pp. 1161-1166
Author(s):  
Parviz Sahandi ◽  
Tirdad Sharif ◽  
Siamak Yassemi

Any finitely generated module M over a local ring R is endowed with a complete intersection dimension CI-dim RM and a Gorenstein dimension G-dim RM. The Gorenstein dimension can be extended to all modules over the ring R. This paper presents a similar extension for the complete intersection dimension, and mentions the relation between this dimension and the Gorenstein flat dimension. In addition, we show that in the intersection theorem, the flat dimension can be replaced by the complete intersection flat dimension.


2015 ◽  
Vol 219 ◽  
pp. 113-125
Author(s):  
Olgur Celikbas ◽  
Srikanth B. Iyengar ◽  
Greg Piepmeyer ◽  
Roger Wiegand

AbstractTensor products usually have nonzero torsion. This is a central theme of Auslander's 1961 paper; the theme continues in the work of Huneke and Wiegand in the 1990s. The main focus in this article is on tensor powers of a finitely generated module over a local ring. Also, we study torsion-free modulesNwith the property thatM ⊗RNhas nonzero torsion unlessMis very special. An important example of such a moduleNis the Frobenius powerpeRover a complete intersection domainRof characteristicp> 0.


1971 ◽  
Vol 5 (1) ◽  
pp. 87-94 ◽  
Author(s):  
Gilbert Baumslag

We establish the result that a finitely generated cyclic extension of a free group is residually finite. This is done, in part, by making use of the fact that a finitely generated module over a principal ideal domain is a direct sum of cyclic modules.


2013 ◽  
Vol 23 (07) ◽  
pp. 1625-1651 ◽  
Author(s):  
CHRISTIAN DÖNCH ◽  
ALEXANDER LEVIN

In this paper, we generalize the classical Gröbner basis technique to prove the existence and present a method of computation of a dimension polynomial in two variables associated with a finitely generated D-module, that is, a finitely generated module over a Weyl algebra. We also present corresponding algorithms and examples of computation of such polynomials and show that bivariate dimension polynomials contain invariants of a D-module, which are not carried by its Bernstein dimension polynomial. Then we apply the obtained results to the isomorphism problem for D-modules.


Sign in / Sign up

Export Citation Format

Share Document