An assessment of Landsat TM band 6 thermal data for analysing land cover in tropical dry forest regions

2004 ◽  
Vol 25 (4) ◽  
pp. 689-706 ◽  
Author(s):  
J. Southworth
2020 ◽  
Vol 115 ◽  
Author(s):  
Daniel Penados ◽  
José Pineda ◽  
Michelle Catalan ◽  
Miguel Avila ◽  
Lori Stevens ◽  
...  

Author(s):  
Masuma Begum ◽  
Niloy Pramanick ◽  
Anirban Mukhopadhyay ◽  
Sayani Datta Majumdar

In this chapter, satellite images of the years 1995, 2005, and 2015 of LANDSAT have been used. After pre-processing (geometric correction and atmospheric correction using FLAASH, LULC change dynamics have been assessed to estimate the changes in total forest cover in Purulia district through an unsupervised K-means classification scheme. To evaluate the health status, vegetation indices, namely NDVI, SAVI, and CVI, have been used. The increase in NDVI, SAVI, and CVI values was inferred as no significant degradation of Purulia forest cover. Moreover, future scenarios have been predicted by implementing a CA-MARKOV model. Using the land cover map of 1995 as the base map, and from 1995 to 2005 as training data, a land cover map of 2015 has been generated which in turn validated by the actual land cover of 2015. After validation, prediction of land cover was possible for the years 2035 and 2050. The prediction suggested that forest area will increase by approximately 4% from 2015 to 2035 and by 3% from 2035 to 2050.


2018 ◽  
Vol 13 (6) ◽  
pp. 549-564 ◽  
Author(s):  
Alexander Krylov ◽  
Marc K. Steininger ◽  
Matthew C. Hansen ◽  
Peter V. Potapov ◽  
Stephen V. Stehman ◽  
...  

Mycotaxon ◽  
2018 ◽  
Vol 133 (3) ◽  
pp. 499-512 ◽  
Author(s):  
Magdalena Contreras-Pacheco ◽  
Ricardo Valenzuela ◽  
Tania Raymundo ◽  
Leticia Pacheco

2021 ◽  
Vol 14 ◽  
pp. 194008292199541
Author(s):  
Xavier Haro-Carrión ◽  
Bette Loiselle ◽  
Francis E. Putz

Tropical dry forests (TDF) are highly threatened ecosystems that are often fragmented due to land-cover change. Using plot inventories, we analyzed tree species diversity, community composition and aboveground biomass patterns across mature (MF) and secondary forests of about 25 years since cattle ranching ceased (SF), 10–20-year-old plantations (PL), and pastures in a TDF landscape in Ecuador. Tree diversity was highest in MF followed by SF, pastures and PL, but many endemic and endangered species occurred in both MF and SF, which demonstrates the importance of SF for species conservation. Stem density was higher in PL, followed by SF, MF and pastures. Community composition differed between MF and SF due to the presence of different specialist species. Some SF specialists also occurred in pastures, and all species found in pastures were also recorded in SF indicating a resemblance between these two land-cover types even after 25 years of succession. Aboveground biomass was highest in MF, but SF and Tectona grandis PL exhibited similar numbers followed by Schizolobium parahyba PL, Ochroma pyramidale PL and pastures. These findings indicate that although species-poor, some PL equal or surpass SF in aboveground biomass, which highlights the critical importance of incorporating biodiversity, among other ecosystem services, to carbon sequestration initiatives. This research contributes to understanding biodiversity conservation across a mosaic of land-cover types in a TDF landscape.


2021 ◽  
Vol 490 ◽  
pp. 119127
Author(s):  
Tobias Fremout ◽  
Evert Thomas ◽  
Kelly Tatiana Bocanegra-González ◽  
Carolina Adriana Aguirre-Morales ◽  
Anjuly Tatiana Morillo-Paz ◽  
...  

2016 ◽  
Vol 77 (3) ◽  
pp. 542-552 ◽  
Author(s):  
J. Mertens ◽  
J. Germer ◽  
J. A. Siqueira Filho ◽  
J. Sauerborn

Abstract Spondias tuberosa Arr., a fructiferous tree endemic to the northeast Brazilian tropical dry forest called Caatinga, accounts for numerous benefits for its ecosystem as well as for the dwellers of the Caatinga. The tree serves as feed for pollinators and dispersers as well as fodder for domestic ruminants, and is a source of additional income for local smallholders and their families. Despite its vantages, it is facing several man-made and natural threats, and it is suspected that S. tuberosa could become extinct. Literature review suggests that S. tuberosa suffers a reduced regeneration leading to population decrease. At this juncture S. tuberosa cannot be considered threatened according to the International Union for Conservation of Nature Red List Categories and Criteria, as it has not yet been assessed and hampered generative regeneration is not considered in the IUCN assessment. The combination of threats, however, may have already caused an extinction debt for S. tuberosa. Due to the observed decline in tree density, a thorough assessment of the S. tuberosa population is recommended, as well as a threat assessment throughout the entire Caatinga.


Sign in / Sign up

Export Citation Format

Share Document