Rejoinder for “Exponential-Family Embedding With Application to Cell Developmental Trajectories for Single-Cell RNA-Seq Data”

2021 ◽  
Vol 116 (534) ◽  
pp. 478-480
Author(s):  
Kevin Z. Lin ◽  
Jing Lei ◽  
Kathryn Roeder
2020 ◽  
Author(s):  
Kevin Z. Lin ◽  
Jing Lei ◽  
Kathryn Roeder

AbstractScientists often embed cells into a lower-dimensional space when studying single-cell RNA-seq data for improved downstream analyses such as developmental trajectory analyses, but the statistical properties of such non-linear embedding methods are often not well understood. In this article, we develop the eSVD (exponential-family SVD), a non-linear embedding method for both cells and genes jointly with respect to a random dot product model using exponential-family distributions. Our estimator uses alternating minimization, which enables us to have a computationally-efficient method, prove the identifiability conditions and consistency of our method, and provide statistically-principled procedures to tune our method. All these qualities help advance the single-cell embedding literature, and we provide extensive simulations to demonstrate that the eSVD is competitive compared to other embedding methods.We apply the eSVD via Gaussian distributions where the standard deviations are proportional to the means to analyze a single-cell dataset of oligodendrocytes in mouse brains (Marques et al., 2016). Using the eSVD estimated embedding, we then investigate the cell developmental trajectories of the oligodendrocytes. While previous results are not able to distinguish the trajectories among the mature oligodendrocyte cell types, our diagnostics and results demonstrate there are two major developmental trajectories that diverge at mature oligodendrocytes.


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Kaikun Xie ◽  
Yu Huang ◽  
Feng Zeng ◽  
Zehua Liu ◽  
Ting Chen

Abstract Recent advancements in both single-cell RNA-sequencing technology and computational resources facilitate the study of cell types on global populations. Up to millions of cells can now be sequenced in one experiment; thus, accurate and efficient computational methods are needed to provide clustering and post-analysis of assigning putative and rare cell types. Here, we present a novel unsupervised deep learning clustering framework that is robust and highly scalable. To overcome the high level of noise, scAIDE first incorporates an autoencoder-imputation network with a distance-preserved embedding network (AIDE) to learn a good representation of data, and then applies a random projection hashing based k-means algorithm to accommodate the detection of rare cell types. We analyzed a 1.3 million neural cell dataset within 30 min, obtaining 64 clusters which were mapped to 19 putative cell types. In particular, we further identified three different neural stem cell developmental trajectories in these clusters. We also classified two subpopulations of malignant cells in a small glioblastoma dataset using scAIDE. We anticipate that scAIDE would provide a more in-depth understanding of cell development and diseases.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Huijian Feng ◽  
Lihui Lin ◽  
Jiekai Chen

Abstract Background Single-cell RNA sequencing is becoming a powerful tool to identify cell states, reconstruct developmental trajectories, and deconvolute spatial expression. The rapid development of computational methods promotes the insight of heterogeneous single-cell data. An increasing number of tools have been provided for biological analysts, of which two programming languages- R and Python are widely used among researchers. R and Python are complementary, as many methods are implemented specifically in R or Python. However, the different platforms immediately caused the data sharing and transformation problem, especially for Scanpy, Seurat, and SingleCellExperiemnt. Currently, there is no efficient and user-friendly software to perform data transformation of single-cell omics between platforms, which makes users spend unbearable time on data Input and Output (IO), significantly reducing the efficiency of data analysis. Results We developed scDIOR for single-cell data transformation between platforms of R and Python based on Hierarchical Data Format Version 5 (HDF5). We have created a data IO ecosystem between three R packages (Seurat, SingleCellExperiment, Monocle) and a Python package (Scanpy). Importantly, scDIOR accommodates a variety of data types across programming languages and platforms in an ultrafast way, including single-cell RNA-seq and spatial resolved transcriptomics data, using only a few codes in IDE or command line interface. For large scale datasets, users can partially load the needed information, e.g., cell annotation without the gene expression matrices. scDIOR connects the analytical tasks of different platforms, which makes it easy to compare the performance of algorithms between them. Conclusions scDIOR contains two modules, dior in R and diopy in Python. scDIOR is a versatile and user-friendly tool that implements single-cell data transformation between R and Python rapidly and stably. The software is freely accessible at https://github.com/JiekaiLab/scDIOR.


2018 ◽  
Vol 52 (1) ◽  
pp. 203-221 ◽  
Author(s):  
Kenneth D. Birnbaum

The growing scale and declining cost of single-cell RNA-sequencing (RNA-seq) now permit a repetition of cell sampling that increases the power to detect rare cell states, reconstruct developmental trajectories, and measure phenotype in new terms such as cellular variance. The characterization of anatomy and developmental dynamics has not had an equivalent breakthrough since groundbreaking advances in live fluorescent microscopy. The new resolution obtained by single-cell RNA-seq is a boon to genetics because the novel description of phenotype offers the opportunity to refine gene function and dissect pleiotropy. In addition, the recent pairing of high-throughput genetic perturbation with single-cell RNA-seq has made practical a scale of genetic screening not previously possible.


2018 ◽  
Author(s):  
Chieh Lin ◽  
Ziv Bar-Joseph

AbstractMotivationMethods for reconstructing developmental trajectories from time series single cell RNA-Seq (scRNA-Seq) data can be largely divided into two categories. The first, often referred to as pseudotime ordering methods, are deterministic and rely on dimensionality reduction followed by an ordering step. The second learns a probabilistic branching model to represent the developmental process. While both types have been successful, each suffers from shortcomings that can impact their accuracy.ResultsWe developed a new method based on continuous state HMMs (CSHMMs) for representing and modeling time series scRNA-Seq data. We define the CSHMM model and provide efficient learning and inference algorithms which allow the method to determine both the structure of the branching process and the assignment of cells to these branches. Analyzing several developmental single cell datasets we show that the CSHMM method accurately infers branching topology and correctly and continuously assign cells to paths, improving upon prior methods proposed for this task. Analysis of genes based on the continuous cell assignment identifies known and novel markers for different cell types.AvailabilitySoftware and Supporting website: www.andrew.cmu.edu/user/chiehll/CSHMM/[email protected] informationSupplementary data are available at Bioinformatics online.


Cancer Cell ◽  
2020 ◽  
Vol 38 (1) ◽  
pp. 44-59.e9 ◽  
Author(s):  
Johannes Gojo ◽  
Bernhard Englinger ◽  
Li Jiang ◽  
Jens M. Hübner ◽  
McKenzie L. Shaw ◽  
...  

2019 ◽  
Vol 35 (22) ◽  
pp. 4707-4715 ◽  
Author(s):  
Chieh Lin ◽  
Ziv Bar-Joseph

Abstract Motivation Methods for reconstructing developmental trajectories from time-series single-cell RNA-Seq (scRNA-Seq) data can be largely divided into two categories. The first, often referred to as pseudotime ordering methods are deterministic and rely on dimensionality reduction followed by an ordering step. The second learns a probabilistic branching model to represent the developmental process. While both types have been successful, each suffers from shortcomings that can impact their accuracy. Results We developed a new method based on continuous-state HMMs (CSHMMs) for representing and modeling time-series scRNA-Seq data. We define the CSHMM model and provide efficient learning and inference algorithms which allow the method to determine both the structure of the branching process and the assignment of cells to these branches. Analyzing several developmental single-cell datasets, we show that the CSHMM method accurately infers branching topology and correctly and continuously assign cells to paths, improving upon prior methods proposed for this task. Analysis of genes based on the continuous cell assignment identifies known and novel markers for different cell types. Availability and implementation Software and Supporting website: www.andrew.cmu.edu/user/chiehl1/CSHMM/ Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document