scholarly journals scDIOR: single cell RNA-seq data IO software

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Huijian Feng ◽  
Lihui Lin ◽  
Jiekai Chen

Abstract Background Single-cell RNA sequencing is becoming a powerful tool to identify cell states, reconstruct developmental trajectories, and deconvolute spatial expression. The rapid development of computational methods promotes the insight of heterogeneous single-cell data. An increasing number of tools have been provided for biological analysts, of which two programming languages- R and Python are widely used among researchers. R and Python are complementary, as many methods are implemented specifically in R or Python. However, the different platforms immediately caused the data sharing and transformation problem, especially for Scanpy, Seurat, and SingleCellExperiemnt. Currently, there is no efficient and user-friendly software to perform data transformation of single-cell omics between platforms, which makes users spend unbearable time on data Input and Output (IO), significantly reducing the efficiency of data analysis. Results We developed scDIOR for single-cell data transformation between platforms of R and Python based on Hierarchical Data Format Version 5 (HDF5). We have created a data IO ecosystem between three R packages (Seurat, SingleCellExperiment, Monocle) and a Python package (Scanpy). Importantly, scDIOR accommodates a variety of data types across programming languages and platforms in an ultrafast way, including single-cell RNA-seq and spatial resolved transcriptomics data, using only a few codes in IDE or command line interface. For large scale datasets, users can partially load the needed information, e.g., cell annotation without the gene expression matrices. scDIOR connects the analytical tasks of different platforms, which makes it easy to compare the performance of algorithms between them. Conclusions scDIOR contains two modules, dior in R and diopy in Python. scDIOR is a versatile and user-friendly tool that implements single-cell data transformation between R and Python rapidly and stably. The software is freely accessible at https://github.com/JiekaiLab/scDIOR.

2019 ◽  
Author(s):  
Anna Danese ◽  
Maria L. Richter ◽  
David S. Fischer ◽  
Fabian J. Theis ◽  
Maria Colomé-Tatché

ABSTRACTEpigenetic single-cell measurements reveal a layer of regulatory information not accessible to single-cell transcriptomics, however single-cell-omics analysis tools mainly focus on gene expression data. To address this issue, we present epiScanpy, a computational framework for the analysis of single-cell DNA methylation and single-cell ATAC-seq data. EpiScanpy makes the many existing RNA-seq workflows from scanpy available to large-scale single-cell data from other -omics modalities. We introduce and compare multiple feature space constructions for epigenetic data and show the feasibility of common clustering, dimension reduction and trajectory learning techniques. We benchmark epiScanpy by interrogating different single-cell brain mouse atlases of DNA methylation, ATAC-seq and transcriptomics. We find that differentially methylated and differentially open markers between cell clusters enrich transcriptome-based cell type labels by orthogonal epigenetic information.


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Kaikun Xie ◽  
Yu Huang ◽  
Feng Zeng ◽  
Zehua Liu ◽  
Ting Chen

Abstract Recent advancements in both single-cell RNA-sequencing technology and computational resources facilitate the study of cell types on global populations. Up to millions of cells can now be sequenced in one experiment; thus, accurate and efficient computational methods are needed to provide clustering and post-analysis of assigning putative and rare cell types. Here, we present a novel unsupervised deep learning clustering framework that is robust and highly scalable. To overcome the high level of noise, scAIDE first incorporates an autoencoder-imputation network with a distance-preserved embedding network (AIDE) to learn a good representation of data, and then applies a random projection hashing based k-means algorithm to accommodate the detection of rare cell types. We analyzed a 1.3 million neural cell dataset within 30 min, obtaining 64 clusters which were mapped to 19 putative cell types. In particular, we further identified three different neural stem cell developmental trajectories in these clusters. We also classified two subpopulations of malignant cells in a small glioblastoma dataset using scAIDE. We anticipate that scAIDE would provide a more in-depth understanding of cell development and diseases.


Author(s):  
Ji Dong ◽  
Peijie Zhou ◽  
Yichong Wu ◽  
Yidong Chen ◽  
Haoling Xie ◽  
...  

Abstract With the rapid development of single-cell sequencing techniques, several large-scale cell atlas projects have been launched across the world. However, it is still challenging to integrate single-cell RNA-seq (scRNA-seq) datasets with diverse tissue sources, developmental stages and/or few overlaps, due to the ambiguity in determining the batch information, which is particularly important for current batch-effect correction methods. Here, we present SCORE, a simple network-based integration methodology, which incorporates curated molecular network features to infer cellular states and generate a unified workflow for integrating scRNA-seq datasets. Validating on real single-cell datasets, we showed that regardless of batch information, SCORE outperforms existing methods in accuracy, robustness, scalability and data integration.


2017 ◽  
Author(s):  
Luke Zappia ◽  
Belinda Phipson ◽  
Alicia Oshlack

AbstractAs single-cell RNA-sequencing (scRNA-seq) datasets have become more widespread the number of tools designed to analyse these data has dramatically increased. Navigating the vast sea of tools now available is becoming increasingly challenging for researchers. In order to better facilitate selection of appropriate analysis tools we have created the scRNA-tools database (www.scRNA-tools.org) to catalogue and curate analysis tools as they become available. Our database collects a range of information on each scRNA-seq analysis tool and categorises them according to the analysis tasks they perform. Exploration of this database gives insights into the areas of rapid development of analysis methods for scRNA-seq data. We see that many tools perform tasks specific to scRNA-seq analysis, particularly clustering and ordering of cells. We also find that the scRNA-seq community embraces an open-source approach, with most tools available under open-source licenses and preprints being extensively used as a means to describe methods. The scRNA-tools database provides a valuable resource for researchers embarking on scRNA-seq analysis and records of the growth of the field over time.Author summaryIn recent years single-cell RNA-sequeing technologies have emerged that allow scientists to measure the activity of genes in thousands of individual cells simultaneously. This means we can start to look at what each cell in a sample is doing instead of considering an average across all cells in a sample, as was the case with older technologies. However, while access to this kind of data presents a wealth of opportunities it comes with a new set of challenges. Researchers across the world have developed new methods and software tools to make the most of these datasets but the field is moving at such a rapid pace it is difficult to keep up with what is currently available. To make this easier we have developed the scRNA-tools database and website (www.scRNA-tools.org). Our database catalogues analysis tools, recording the tasks they can be used for, where they can be downloaded from and the publications that describe how they work. By looking at this database we can see that developers have focued on methods specific to single-cell data and that they embrace an open-source approach with permissive licensing, sharing of code and preprint publications.


2021 ◽  
Author(s):  
Yuejiao Li ◽  
Tao Yang ◽  
Tingting Lai ◽  
Lijin You ◽  
Fan Yang ◽  
...  

Advances in single-cell sequencing technology provide a unique approach to characterize the heterogeneity and distinctive functional states at single-cell resolution, leading to rapid accumulation of large-scale single-cell datasets. A big challenge undertaken by research community especially bench scientists is how to simplify the way of retrieving, processing and analyzing the huge number of datasets. Towards this end, we developed Cell-omics Data Coordinate Platform (CDCP),a platform that aims to share and integrate comprehensive single-cell datasets, and to provide a network analysis toolkit for personalized analysis. CDCP contains single-cell RNA-seq and ATAC-seq datasets of 474,572 cells from 6,459 samples in species covering humans, non-human primate models and other animals. It allows querying and visualization of interested datasets and the expression profile of distinct genes in different cell clusters and cell types. Besides, this platform provides an analysis pipeline for non-bioinformatician experimental scientists to address questions not focused by the submitters of the datasets. In summary, CDCP provides a user-friendly interface for researchers to explore, visualize, analyze, download and submit published single-cell datasets and it will be a valuable resource for investigators to explore the global transcriptome profiling at single-cell level.


Author(s):  
P. Moreno ◽  
N. Huang ◽  
J.R. Manning ◽  
S. Mohammed ◽  
A. Solovyev ◽  
...  

AbstractSingle-cell RNA-Seq (scRNA-Seq) data analysis requires expertise in command-line tools, programming languages and scaling on compute infrastructure. As scRNA-Seq becomes widespread, computational pipelines need to be more accessible, simpler and scalable. We introduce an interactive analysis environment for scRNA-Seq, based on Galaxy, with ~70 functions from major single-cell analysis tools, which can be run on compute clusters, cloud providers or single machines, to bring compute to the data in scRNA-Seq.


2019 ◽  
Author(s):  
Debajyoti Sinha ◽  
Pradyumn Sinha ◽  
Ritwik Saha ◽  
Sanghamitra Bandyopadhyay ◽  
Debarka Sengupta

ABSTRACTDropClust leverages Locality Sensitive Hashing (LSH) to speed up clustering of large scale single cell expression data. It makes ingenious use of structure persevering sampling and modality based principal component selection to rescue minor cell types. Existing implementation of dropClust involves interfacing with multiple programming languagesviz. R, python and C, hindering seamless installation and portability. Here we present dropClust2, a complete R package that’s not only fast but also minimally resource intensive. DropClust2 features a novel batch effect removal algorithm that allows integrative analysis of single cell RNA-seq (scRNA-seq) datasets.Availability and implementationdropClust2 is freely available athttps://debsinha.shinyapps.io/dropClust/as an online web service and athttps://github.com/debsin/dropClustas an R package.


2021 ◽  
Author(s):  
Pablo Moreno ◽  
Ni Huang ◽  
Jonathan R. Manning ◽  
Suhaib Mohammed ◽  
Andrey Solovyev ◽  
...  
Keyword(s):  
Rna Seq ◽  

Sign in / Sign up

Export Citation Format

Share Document