cell data
Recently Published Documents


TOTAL DOCUMENTS

680
(FIVE YEARS 388)

H-INDEX

35
(FIVE YEARS 10)

2022 ◽  
Vol 3 (1) ◽  
pp. 101034
Author(s):  
Daniëlle Krijgsman ◽  
Neeraj Sinha ◽  
Matthijs J.D. Baars ◽  
Stephanie van Dam ◽  
Mojtaba Amini ◽  
...  

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Lucille Lopez-Delisle ◽  
Jean-Baptiste Delisle

Abstract Background The number of studies using single-cell RNA sequencing (scRNA-seq) is constantly growing. This powerful technique provides a sampling of the whole transcriptome of a cell. However, sparsity of the data can be a major hurdle when studying the distribution of the expression of a specific gene or the correlation between the expressions of two genes. Results We show that the main technical noise associated with these scRNA-seq experiments is due to the sampling, i.e., Poisson noise. We present a new tool named baredSC, for Bayesian Approach to Retrieve Expression Distribution of Single-Cell data, which infers the intrinsic expression distribution in scRNA-seq data using a Gaussian mixture model. baredSC can be used to obtain the distribution in one dimension for individual genes and in two dimensions for pairs of genes, in particular to estimate the correlation in the two genes’ expressions. We apply baredSC to simulated scRNA-seq data and show that the algorithm is able to uncover the expression distribution used to simulate the data, even in multi-modal cases with very sparse data. We also apply baredSC to two real biological data sets. First, we use it to measure the anti-correlation between Hoxd13 and Hoxa11, two genes with known genetic interaction in embryonic limb. Then, we study the expression of Pitx1 in embryonic hindlimb, for which a trimodal distribution has been identified through flow cytometry. While other methods to analyze scRNA-seq are too sensitive to sampling noise, baredSC reveals this trimodal distribution. Conclusion baredSC is a powerful tool which aims at retrieving the expression distribution of few genes of interest from scRNA-seq data.


2022 ◽  
Author(s):  
Meelad Amouzgar ◽  
David R Glass ◽  
Reema Baskar ◽  
Inna Averbukh ◽  
Samuel C Kimmey ◽  
...  

Single-cell technologies generate large, high-dimensional datasets encompassing a diversity of omics. Dimensionality reduction enables visualization of data by representing cells in two-dimensional plots that capture the structure and heterogeneity of the original dataset. Visualizations contribute to human understanding of data and are useful for guiding both quantitative and qualitative analysis of cellular relationships. Existing algorithms are typically unsupervised, utilizing only measured features to generate manifolds, disregarding known biological labels such as cell type or experimental timepoint. Here, we repurpose the classification algorithm, linear discriminant analysis (LDA), for supervised dimensionality reduction of single-cell data. LDA identifies linear combinations of predictors that optimally separate a priori classes, enabling users to tailor visualizations to separate specific aspects of cellular heterogeneity. We implement feature selection by hybrid subset selection (HSS) and demonstrate that this flexible, computationally-efficient approach generates non-stochastic, interpretable axes amenable to diverse biological processes, such as differentiation over time and cell cycle. We benchmark HSS-LDA against several popular dimensionality reduction algorithms and illustrate its utility and versatility for exploration of single-cell mass cytometry, transcriptomics and chromatin accessibility data.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Huijian Feng ◽  
Lihui Lin ◽  
Jiekai Chen

Abstract Background Single-cell RNA sequencing is becoming a powerful tool to identify cell states, reconstruct developmental trajectories, and deconvolute spatial expression. The rapid development of computational methods promotes the insight of heterogeneous single-cell data. An increasing number of tools have been provided for biological analysts, of which two programming languages- R and Python are widely used among researchers. R and Python are complementary, as many methods are implemented specifically in R or Python. However, the different platforms immediately caused the data sharing and transformation problem, especially for Scanpy, Seurat, and SingleCellExperiemnt. Currently, there is no efficient and user-friendly software to perform data transformation of single-cell omics between platforms, which makes users spend unbearable time on data Input and Output (IO), significantly reducing the efficiency of data analysis. Results We developed scDIOR for single-cell data transformation between platforms of R and Python based on Hierarchical Data Format Version 5 (HDF5). We have created a data IO ecosystem between three R packages (Seurat, SingleCellExperiment, Monocle) and a Python package (Scanpy). Importantly, scDIOR accommodates a variety of data types across programming languages and platforms in an ultrafast way, including single-cell RNA-seq and spatial resolved transcriptomics data, using only a few codes in IDE or command line interface. For large scale datasets, users can partially load the needed information, e.g., cell annotation without the gene expression matrices. scDIOR connects the analytical tasks of different platforms, which makes it easy to compare the performance of algorithms between them. Conclusions scDIOR contains two modules, dior in R and diopy in Python. scDIOR is a versatile and user-friendly tool that implements single-cell data transformation between R and Python rapidly and stably. The software is freely accessible at https://github.com/JiekaiLab/scDIOR.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Nadia M. Davidson ◽  
Ying Chen ◽  
Teresa Sadras ◽  
Georgina L. Ryland ◽  
Piers Blombery ◽  
...  

AbstractIn cancer, fusions are important diagnostic markers and targets for therapy. Long-read transcriptome sequencing allows the discovery of fusions with their full-length isoform structure. However, due to higher sequencing error rates, fusion finding algorithms designed for short reads do not work. Here we present JAFFAL, to identify fusions from long-read transcriptome sequencing. We validate JAFFAL using simulations, cell lines, and patient data from Nanopore and PacBio. We apply JAFFAL to single-cell data and find fusions spanning three genes demonstrating transcripts detected from complex rearrangements. JAFFAL is available at https://github.com/Oshlack/JAFFA/wiki.


2022 ◽  
Author(s):  
Jiyuan Fang ◽  
Cliburn Chan ◽  
Kouros Owzar ◽  
Liuyang Wang ◽  
Diyuan Qin ◽  
...  

Single-cell RNA-sequencing (scRNA-seq) technology allows us to explore cellular heterogeneity in the transcriptome. Because most scRNA-seq data analyses begin with cell clustering, its accuracy considerably impacts the validity of downstream analyses. Although many clustering methods have been developed, few tools are available to evaluate the clustering "goodness-of-fit" to the scRNA-seq data. In this paper, we propose a new Clustering Deviation Index (CDI) that measures the deviation of any clustering label set from the observed single-cell data. We conduct in silico and experimental scRNA-seq studies to show that CDI can select the optimal clustering label set. Particularly, CDI also informs the optimal tuning parameters for any given clustering method and the correct number of cluster components.


2021 ◽  
Author(s):  
Philipp Weiler ◽  
Koen Van den Berge ◽  
Kelly Street ◽  
Simone Tiberi

Technological developments have led to an explosion of high-throughput single cell data, which are revealing unprecedented perspectives on cell identity. Recently, significant attention has focused on investigating, from single-cell RNA-sequencing (scRNA-seq) data, cellular dynamic processes, such as cell differentiation, cell cycle and cell (de)activation. Trajectory inference methods estimate a trajectory, a collection of differentiation paths of a dynamic system, by ordering cells along the paths of such a dynamic process. While trajectory inference tools typically work with gene expression levels, common scRNA-seq protocols allow the identification and quantification of unspliced pre-mRNAs and mature spliced mRNAs, for each gene. By exploiting the abundance of unspliced and spliced mRNA, one can infer the RNA velocity of individual cells, i.e., the time derivative of the gene expression state of cells. Whereas traditional trajectory inference methods reconstruct cellular dynamics given a population of cells of varying maturity, RNA velocity relies on a dynamical model describing splicing dynamics. Here, we initially discuss conceptual and theoretical aspects of both approaches, then illustrate how they can be combined together, and finally present an example use-case on real data.


2021 ◽  
Author(s):  
Srinath Muralidharan ◽  
Sarthak Sahoo ◽  
Aryamaan Saha ◽  
Sanjay Chandran ◽  
Sauma Suvra Majumdar ◽  
...  

Cancer metastasis is the leading cause of cancer-related mortality and the process of Epithelial to Mesenchymal Transition (EMT) is crucial for cancer metastasis. Either a partial or complete EMT have been reported to influence the metabolic plasticity of cancer cells in terms of switching among oxidative phosphorylation, fatty acid oxidation and glycolysis pathways. However, a comprehensive analysis of these major metabolic pathways their associations with EMT across different cancers is lacking. Here, we analyse more than 180 cancer cell datasets and show diverse associations of these metabolic pathways with the EMT status of cancer cells. Our bulk data analysis shows that EMT generally positively correlates with glycolysis but negatively with oxidative phosphorylation and fatty acid metabolism. These correlations are also consistent at the level of their molecular master regulators, namely AMPK and HIF1α. Yet, these associations are shown to not be universal. Analysis of single-cell data of EMT induction shows dynamic changes along the different axes of metabolic pathways, consistent with general trends seen in bulk samples. Together, our results reveal underlying patterns of metabolic plasticity and heterogeneity as cancer cells traverse through the epithelial-hybrid-mesenchymal spectrum of states.


2021 ◽  
pp. 223-260
Author(s):  
Ricardo Gobato ◽  
Abhijit Mitra

The cell cycle of such a subject has been thoroughly studied, yet here we are examining for the second time that we have entered a new phase; Biology always has new insights to show us. This data was amazing. This map is based on this beautiful circular pattern that we have identified as all the different stages of the cell cycle. Have a disease. When Placer and colleagues used the ccAF tool to analyze cell data for glioma tumors, we found that tumor cells were often in the G0 or G1 nerve growth state. With tumor aggression, fewer cells remain at rest in the G0 nerve state. This means that more cells are growing and growing in the tumor. Keywords: Cancer; Cells; Tissues; Tumors; Prevention; Prognosis; Diagnosis; Imaging; Screening, Treatment; Management


2021 ◽  
Author(s):  
Nathanael Andrews ◽  
Martin Enge

Abstract CIM-seq is a tool for deconvoluting RNA-seq data from cell multiplets (clusters of two or more cells) in order to identify physically interacting cell in a given tissue. The method requires two RNAseq data sets from the same tissue: one of single cells to be used as a reference, and one of cell multiplets to be deconvoluted. CIM-seq is compatible with both droplet based sequencing methods, such as Chromium Single Cell 3′ Kits from 10x genomics; and plate based methods, such as Smartseq2. The pipeline consists of three parts: 1) Dissociation of the target tissue, FACS sorting of single cells and multiplets, and conventional scRNA-seq 2) Feature selection and clustering of cell types in the single cell data set - generating a blueprint of transcriptional profiles in the given tissue 3) Computational deconvolution of multiplets through a maximum likelihood estimation (MLE) to determine the most likely cell type constituents of each multiplet.


Sign in / Sign up

Export Citation Format

Share Document