scholarly journals Robustness and performance evaluations for simulation-based control and component parameter optimization for a series hydraulic hybrid vehicle

2019 ◽  
Vol 52 (3) ◽  
pp. 446-464 ◽  
Author(s):  
Katharina Baer ◽  
Liselott Ericson ◽  
Petter Krus
Author(s):  
Tao Liu ◽  
Xiao-hui Zhang ◽  
Wen-li Yang ◽  
Guo-quan Fan ◽  
Yun-fei Wang ◽  
...  

Author(s):  
Katharina Baer ◽  
Liselott Ericson ◽  
Petter Krus

Hybridization of hydraulic drivetrains offers the potential of efficiency improvement for on- and off-road applications. To realize the advantages, a carefully designed system and corresponding control strategy are required, which are commonly obtained through a sequential design process.Addressing component selection and control parameterization simultaneously through simulation-based optimization allows for exploration of a large design space as well as design relations and trade-offs, and their evaluation in dynamic conditions which exist in real driving scenarios. In this paper, the optimization framework for a hydraulic hybrid vehicle is introduced, including the simulation model for a series hybrid architecture and component scaling considerations impacting the system’s performance.Anumber of optimization experiments for an on-road light-duty vehicle, focused on standard-drivecycle- performance, illustrate the impact of the problem formulation on the final design and thus the complexity of the design problem. The designs found demonstrate both the potential of energy storage in series hybrids, via an energy balance diagram, as well as some challenges. The framework presented here provides a base for systematic evaluation of design alternatives and problem formulation aspects.


Author(s):  
Timothy O. Deppen ◽  
Andrew G. Alleyne ◽  
Kim A. Stelson ◽  
Jonathan J. Meyer

In this paper, a model predictive control (MPC) approach is presented for solving the energy management problem in a parallel hydraulic hybrid vehicle. The hydraulic hybrid vehicle uses variable displacement pump/motors to transfer energy between the mechanical and hydraulic domains and a high pressure accumulator for energy storage. A model of the parallel hydraulic hybrid powertrain is presented which utilizes the Simscape/Simhydraulics toolboxes of Matlab. These toolboxes allow for a concise description of the relevant powertrain dynamics. The proposed MPC regulates the engine torque and pump/motor displacement in order to track a desired velocity profile while maintaining desired engine conditions. In addition, logic is applied to the MPC to prevent high frequency cycling of the engine. Simulation results demonstrate the capability of the proposed control strategy to track both a desired engine torque and vehicle velocity.


Sign in / Sign up

Export Citation Format

Share Document