Digital signature with message recovery based on factoring and discrete logarithm

2015 ◽  
Vol 62 (3) ◽  
pp. 415-423 ◽  
Author(s):  
Min-Shiang Hwang ◽  
Shih-Ming Chen ◽  
Chi-Yu Liu
Author(s):  
Nedal Tahat ◽  
Rania Shaqboua ◽  
Emad E. Abdallah ◽  
Mohammad Bsoul ◽  
Wasfi Shatanawi

We present a new digital signature scheme with message recovery and its authenticated encryption based on elliptic curve discrete logarithm and quadratic residue. The main idea is to provide a higher level of security than all other techniques that use signatures with single hard problem including factoring, discrete logarithm, residuosity, or elliptic curves. The proposed digital signature schemes do not involve any modular exponentiation operations that leave no gap for attackers. The security analysis demonstrates the improved performance of the proposed schemes in comparison with existing techniques in terms of the ability to resist the most common attacks


Author(s):  
Anna ILYENKO ◽  
Sergii ILYENKO ◽  
Yana MASUR

In this article, the main problems underlying the current asymmetric crypto algorithms for the formation and verification of electronic-digital signature are considered: problems of factorization of large integers and problems of discrete logarithm. It is noted that for the second problem, it is possible to use algebraic groups of points other than finite fields. The group of points of the elliptical curve, which satisfies all set requirements, looked attractive on this side. Aspects of the application of elliptic curves in cryptography and the possibilities offered by these algebraic groups in terms of computational efficiency and crypto-stability of algorithms were also considered. Information systems using elliptic curves, the keys have a shorter length than the algorithms above the finite fields. Theoretical directions of improvement of procedure of formation and verification of electronic-digital signature with the possibility of ensuring the integrity and confidentiality of information were considered. The proposed method is based on the Schnorr signature algorithm, which allows data to be recovered directly from the signature itself, similarly to RSA-like signature systems, and the amount of recoverable information is variable depending on the information message. As a result, the length of the signature itself, which is equal to the sum of the length of the end field over which the elliptic curve is determined, and the artificial excess redundancy provided to the hidden message was achieved.


Sign in / Sign up

Export Citation Format

Share Document