Renal denervation inhibits the renin–angiotensin–aldosterone system in spontaneously hypertensive rats

Author(s):  
Fei Qin ◽  
Jianling Li ◽  
Yong-Fa Dai ◽  
Xiao-ge Zhong ◽  
Ya-jin Pan
2021 ◽  
Vol 71 (1) ◽  
Author(s):  
Toru Kawada ◽  
Takuya Nishikawa ◽  
Satoru Suehara ◽  
Satoshi Sawada ◽  
Tetsuo Tanaka ◽  
...  

AbstractPrimary acute sympathetic activation (PASA) causes a subsequent arterial pressure (AP) elevation. In this case, an antidiuretic effect via the renal innervation and pressure diuresis can act antagonistically on the kidneys. We examined the effect of PASA on urine output in spontaneously hypertensive rats (SHR) 4–7 days after unilateral renal denervation (RDN) (n = 9). The slope of the plot of urine flow versus AP was positive (0.120 ± 0.031 μL min−1 kg−1 mmHg−1) on the intact side, but it was less than 1/3 of the slope observed previously in normotensive Wistar–Kyoto rats (WKY). RDN did not normalize the slope of urine flow versus AP (0.179 ± 0.025 μL min−1 kg−1 mmHg−1, P = 0.098 versus the intact side). The urine flow at the operating point of the AP tended to be greater on the denervated than the intact side (29.0 ± 1.8 vs. 25.3 ± 1.9 μL min−1 kg−1, P = 0.055). The percent increase (17.2 ± 7.2%) was not different from that observed previously in WKY. Although high-resting sympathetic nerve activity is prerequisite for maintaining hypertension in SHR, the effect of sympathetic innervation on the urine output function was not greater than that in WKY.


1979 ◽  
Vol 236 (3) ◽  
pp. H409-H416 ◽  
Author(s):  
M. Shibota ◽  
A. Nagaoka ◽  
A. Shino ◽  
T. Fujita

The development of malignant hypertension was studied in stroke-prone spontaneously hypertensive rats (SHR) kept on 1% NaCl as drinking water. Along with salt-loading, blood pressure gradually increased and reached a severe hypertensive level (greater than 230 mmHg), which was followed by increases in urinary protein (greater than 100 (mg/250 g body wt)/day) and plasma renin concentration (PRC, from 18.9 +/- 0.1 to 51.2 +/- 19.4 (ng/ml)/h, mean +/- SD). At this stage, renal small arteries and arterioles showed severe sclerosis and fibrinoid necrosis. Stroke was observed within a week after the onset of these renal abnormalities. The dose of exogenous angiotensin II (AII) producing 30 mmHg rise in blood pressure increased with the elevation of PRC, from 22 +/- 12 to 75 +/- 36 ng/kg, which was comparable to that in rats on water. The fall of blood pressure due to an AII inhibitor, [1-sarcosine, 8-alanine]AII (10(microgram/kg)/min for 40 min) became more prominent with the increase in PRC in salt-loaded rats, but was not detected in rats on water. These findings suggest that the activation of renin-angiotensin system participates in malignant hypertension of salt-loaded stroke-prone SHR rats that show stroke signs, proteinuria, hyperreninemia, and renovascular changes.


Sign in / Sign up

Export Citation Format

Share Document