Variable speed limit strategy with anticipatory lane changing decisions

Author(s):  
Bidoura Khondaker ◽  
Lina Kattan
2017 ◽  
Vol 11 (10) ◽  
pp. 632-640 ◽  
Author(s):  
Li Zhang ◽  
Lei Zhang ◽  
David K. Hale ◽  
Jia Hu ◽  
Zhitong Huang

2021 ◽  
Vol 11 (6) ◽  
pp. 2574
Author(s):  
Filip Vrbanić ◽  
Edouard Ivanjko ◽  
Krešimir Kušić ◽  
Dino Čakija

The trend of increasing traffic demand is causing congestion on existing urban roads, including urban motorways, resulting in a decrease in Level of Service (LoS) and safety, and an increase in fuel consumption. Lack of space and non-compliance with cities’ sustainable urban plans prevent the expansion of new transport infrastructure in some urban areas. To alleviate the aforementioned problems, appropriate solutions come from the domain of Intelligent Transportation Systems by implementing traffic control services. Those services include Variable Speed Limit (VSL) and Ramp Metering (RM) for urban motorways. VSL reduces the speed of incoming vehicles to a bottleneck area, and RM limits the inflow through on-ramps. In addition, with the increasing development of Autonomous Vehicles (AVs) and Connected AVs (CAVs), new opportunities for traffic control are emerging. VSL and RM can reduce traffic congestion on urban motorways, especially so in the case of mixed traffic flows where AVs and CAVs can fully comply with the control system output. Currently, there is no existing overview of control algorithms and applications for VSL and RM in mixed traffic flows. Therefore, we present a comprehensive survey of VSL and RM control algorithms including the most recent reinforcement learning-based approaches. Best practices for mixed traffic flow control are summarized and new viewpoints and future research directions are presented, including an overview of the currently open research questions.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Jinming You ◽  
Shouen Fang ◽  
Lanfang Zhang ◽  
John Taplin ◽  
Jingqiu Guo

New technologies and traffic data sources provide great potential to extend advanced strategies in freeway safety research. The High Definition Monitoring System (HDMS) data contribute comprehensive and precise individual vehicle information. This paper proposes an innovative Variable Speed Limit (VSL) based approach to manage crash risks by intervening in traffic flow dynamics on freeways using HDMS data. We first conducted an empirical analysis on real-time crash risk estimation using a binary logistic regression model. Then, intensive microscopic simulations based on AIMSUN were carried out to explore the effects of various intervention strategies with respect to a 3-lane freeway stretch in China. Different speed limits with distinct compliance rates under specified traffic conditions have been simulated. By taking into account the trade-off between safety benefits and delay in travel time, the speed limit strategies were optimized under various traffic conditions and the model with gradient feedback produces more satisfactory performance in controlling real-time crash risks. Last, the results were integrated into lane management strategies. This research can provide new ideas and methods to reveal the freeway crash risk evolution and active traffic management.


2015 ◽  
Vol 42 (7) ◽  
pp. 477-489 ◽  
Author(s):  
Ying Luo ◽  
M. Hadiuzzaman ◽  
Jie Fang ◽  
Tony Z. Qiu

Over the past few decades, several active traffic control methods have been proposed to improve freeway efficiency at bottleneck locations. Variable speed limit (VSL) is one of these effective controls. Previous studies have evaluated VSL control, but primarily during recurrent congestion only. This study focuses on evaluating the performance of VSL control for both recurrent and non-recurrent congestion. To assess the effectiveness of a previously proposed VSL control in a real-world situation, this study has three evaluation objectives: (1) examine the control performance when recurrent and (or) non-recurrent congestion occurs; (2) assess the effectiveness of the control when a queue encounters the VSL sign; and (3) consider the impact of system detection delay in VSL control. Comparative experiments for Whitemud Drive in Edmonton, Alberta, Canada, are simulated in the VISSIM platform, and traffic performance is compared among scenarios with and without control. The simulation results show that VSL improves mobility for both recurrent and non-recurrent congestion. The VSL control reduces total travel time, and improves total travel distance and total flow. Furthermore, it slows down the shockwave propagation speed, improves the average speed on most of the freeway segments, and reduces the duration of traffic recovery.


Author(s):  
Jenna Buddemeyer ◽  
Rhonda K. Young ◽  
Brendan Dorsey-Spitz

Sign in / Sign up

Export Citation Format

Share Document