variable speed limit
Recently Published Documents


TOTAL DOCUMENTS

209
(FIVE YEARS 56)

H-INDEX

20
(FIVE YEARS 3)

Algorithms ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 266
Author(s):  
Juan Chen ◽  
Qinxuan Feng ◽  
Qi Guo

In order to solve the problem of traffic congestion and emission optimization of urban multi-class expressways, a robust dynamic nondominated sorting multi-objective genetic algorithm DFCM-RDNSGA-III based on density fuzzy c-means clustering method is proposed in this paper. Considering the three performance indicators of travel time, ramp queue and traffic emissions, the ramp metering and variable speed limit control schemes of an expressway are optimized to improve the main road and ramp traffic congestion, therefore achieving energy conservation and emission reduction. In the VISSIM simulation environment, a multi-on-ramp and multi-off-ramp road network is built to verify the performance of the algorithm. The results show that, compared with the existing algorithm NSGA-III, the DFCM-RDNSGA-III algorithm proposed in this paper can provide better ramp metering and variable speed limit control schemes in the process of road network peak formation and dissipation. In addition, the traffic congestion of expressways can be improved and energy conservation as well as emission reduction can also be realized.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Xingju Wang ◽  
Rongqun Zhang ◽  
Yang Gou ◽  
Jiayu Liu ◽  
Lin Zhao ◽  
...  

Freeway is an important component of transportation system. Bottleneck areas on freeway reduce driving safety and traffic efficiency. The development of intelligent connected technology provides a new idea for traffic management. In order to alleviate traffic congestion on the freeway bottleneck area, this paper proposes a variable speed limit (VSL) control method in intelligent connected environment. In this paper, the METANET model is improved by combining intelligent connected environment and VSL control theory. The total traffic capacity (TTC), total travel time (TTT), and total speed difference (TSD) are used to build multiobjective function. The microsimulation at SUMO by using the data from PeMS is employed as a case study to validate the proposed model. The results show that the VSL online control method in intelligent connected environment has better control effect. And the improvement is more obvious with increasing penetration rate of intelligent connected vehicle (ICV).


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Shubin Li ◽  
Tao Wang ◽  
Hualing Ren ◽  
Baiying Shi ◽  
Xiangke Kong

The urban expressway network is the main part of the urban traffic network carrying most of the city’s traffic pressure for its continuity and rapidity, but the control method of the traffic flow was too simple to other control methods in application in addition to the ramp control and the fixed speed control. In this paper, the theory of variable speed limit (VSL) was used to develop an optimal control model based on the improved traffic flow simulation model according to the characteristics of urban expressway traffic flow. The objective of the proposed model is to minimize the delay and maximize the traffic flow. It can adjust the traffic flow on the network in space time so that the whole network is in a state of equilibrium which not only is conducive to the control of the local traffic congestion and avoids the spread of congestion but also improves the traffic safety. The SPSA-based solution algorithm was proposed by taking into account the needs of real-time online applications. It can not only ensure the accuracy of the solution but also meet the requirements of the simulation time. The simulation results show that the variable speed limit can be optimized in moderate demand, and the proposed model and algorithm are effective and feasible in this paper. The conclusions are useful to help the traffic management department to formulate reasonable traffic control strategies.


Aerospace ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 93
Author(s):  
Marta Ribeiro ◽  
Joost Ellerbroek ◽  
Jacco Hoekstra

Current investigations into urban aerial mobility, as well as the continuing growth of global air transportation, have renewed interest in conflict detection and resolution (CD&R) methods. The use of drones for applications such as package delivery, would result in traffic densities that are orders of magnitude higher than those currently observed in manned aviation. Such densities do not only make automated conflict detection and resolution a necessity, but will also force a re-evaluation of aspects such as coordination vs. priority, or state vs. intent. This paper looks into enabling a safe introduction of drones into urban airspace by setting travelling rules in the operating airspace which benefit tactical conflict resolution. First, conflicts resulting from changes of direction are added to conflict resolution with intent trajectory propagation. Second, the likelihood of aircraft with opposing headings meeting in conflict is reduced by separating traffic into different layers per heading–altitude rules. Guidelines are set in place to make sure aircraft respect the heading ranges allowed at every crossed layer. Finally, we use a reinforcement learning agent to implement variable speed limits towards creating a more homogeneous traffic situation between cruising and climbing/descending aircraft. The effects of all of these variables were tested through fast-time simulations on an open source airspace simulation platform. Results showed that we were able to improve the operational safety of several scenarios.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xu Qu ◽  
Mofeng Yang ◽  
Junyi Ji ◽  
Linheng Li ◽  
Bin Ran

Variable speed limit (VSL) control dynamically adjusts the displayed speed limit to harmonize traffic speed, prevent congestions, and reduce crash risks based on prevailing traffic stream and weather conditions. Previous research studies examine the impacts of VSL control on reducing corridor-level crash risks and improving bottleneck throughput. However, less attention focuses on utilizing real-world data to see how compliant the drivers are under different VSL values and how the aggregated driving behavior changes. This study aims to fill the gap. With the high-resolution lane-by-lane traffic big data collected from a European motorway, this study performs statistical analysis to measure the difference in driving behavior under different VSL values and analyze the safety impacts of VSL controls on aggregate driving behaviors (mean speed, average speed difference, and the percentage of small space headway). The data analytics show that VSL control can effectively decrease the mean speed, the speed difference, and the percentage of small space headways. The safety impacts of VSL control on aggregated driving behavior are also discussed. The aggregated driving behavior variables follow a trend of first decreasing and then increasing with the continuous decrease in VSL values, indicating that potential traffic safety benefits can be achieved by adopting suitable VSL values that match with prevailing traffic conditions.


2021 ◽  
Vol 11 (6) ◽  
pp. 2574
Author(s):  
Filip Vrbanić ◽  
Edouard Ivanjko ◽  
Krešimir Kušić ◽  
Dino Čakija

The trend of increasing traffic demand is causing congestion on existing urban roads, including urban motorways, resulting in a decrease in Level of Service (LoS) and safety, and an increase in fuel consumption. Lack of space and non-compliance with cities’ sustainable urban plans prevent the expansion of new transport infrastructure in some urban areas. To alleviate the aforementioned problems, appropriate solutions come from the domain of Intelligent Transportation Systems by implementing traffic control services. Those services include Variable Speed Limit (VSL) and Ramp Metering (RM) for urban motorways. VSL reduces the speed of incoming vehicles to a bottleneck area, and RM limits the inflow through on-ramps. In addition, with the increasing development of Autonomous Vehicles (AVs) and Connected AVs (CAVs), new opportunities for traffic control are emerging. VSL and RM can reduce traffic congestion on urban motorways, especially so in the case of mixed traffic flows where AVs and CAVs can fully comply with the control system output. Currently, there is no existing overview of control algorithms and applications for VSL and RM in mixed traffic flows. Therefore, we present a comprehensive survey of VSL and RM control algorithms including the most recent reinforcement learning-based approaches. Best practices for mixed traffic flow control are summarized and new viewpoints and future research directions are presented, including an overview of the currently open research questions.


Sign in / Sign up

Export Citation Format

Share Document