A RBF based finite difference method for option pricing under regime-switching jump-diffusion model

Author(s):  
Alpesh Kumar ◽  
B. V. Rathish Kumar
2009 ◽  
Vol 39 (2) ◽  
pp. 515-539 ◽  
Author(s):  
Fei Lung Yuen ◽  
Hailiang Yang

AbstractNowadays, the regime switching model has become a popular model in mathematical finance and actuarial science. The market is not complete when the model has regime switching. Thus, pricing the regime switching risk is an important issue. In Naik (1993), a jump diffusion model with two regimes is studied. In this paper, we extend the model of Naik (1993) to a multi-regime case. We present a trinomial tree method to price options in the extended model. Our results show that the trinomial tree method in this paper is an effective method; it is very fast and easy to implement. Compared with the existing methodologies, the proposed method has an obvious advantage when one needs to price exotic options and the number of regime states is large. Various numerical examples are presented to illustrate the ideas and methodologies.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Xinfeng Ruan ◽  
Wenli Zhu ◽  
Shuang Li ◽  
Jiexiang Huang

We study option pricing with risk-minimization criterion in an incomplete market where the dynamics of the risky underlying asset is governed by a jump diffusion equation with stochastic volatility. We obtain the Radon-Nikodym derivative for the minimal martingale measure and a partial integro-differential equation (PIDE) of European option. The finite difference method is employed to compute the European option valuation of PIDE.


2020 ◽  
Vol 40 (1) ◽  
pp. 13-27
Author(s):  
Tanmoy Kumar Debnath ◽  
ABM Shahadat Hossain

In this paper, we have applied the finite difference methods (FDMs) for the valuation of European put option (EPO). We have mainly focused the application of Implicit finite difference method (IFDM) and Crank-Nicolson finite difference method (CNFDM) for option pricing. Both these techniques are used to discretized Black-Scholes (BS) partial differential equation (PDE). We have also compared the convergence of the IFDM and CNFDM to the analytic BS price of the option. This turns out a conclusion that both these techniques are fairly fruitful and excellent for option pricing. GANIT J. Bangladesh Math. Soc.Vol. 40 (2020) 13-27


Sign in / Sign up

Export Citation Format

Share Document