Shallow landslide initiation susceptibility mapping by GIS-based weights-of-evidence analysis of multi-class spatial data-sets: a case study from the natural sloping terrain of Western Ghats, India

Author(s):  
H. Vijith ◽  
K.N. Krishnakumar ◽  
G.S. Pradeep ◽  
M.V. Ninu Krishnan ◽  
G. Madhu
2020 ◽  
Vol 12 (1) ◽  
pp. 580-597
Author(s):  
Mohamad Hamzeh ◽  
Farid Karimipour

AbstractAn inevitable aspect of modern petroleum exploration is the simultaneous consideration of large, complex, and disparate spatial data sets. In this context, the present article proposes the optimized fuzzy ELECTRE (OFE) approach based on combining the artificial bee colony (ABC) optimization algorithm, fuzzy logic, and an outranking method to assess petroleum potential at the petroleum system level in a spatial framework using experts’ knowledge and the information available in the discovered petroleum accumulations simultaneously. It uses the characteristics of the essential elements of a petroleum system as key criteria. To demonstrate the approach, a case study was conducted on the Red River petroleum system of the Williston Basin. Having completed the assorted preprocessing steps, eight spatial data sets associated with the criteria were integrated using the OFE to produce a map that makes it possible to delineate the areas with the highest petroleum potential and the lowest risk for further exploratory investigations. The success and prediction rate curves were used to measure the performance of the model. Both success and prediction accuracies lie in the range of 80–90%, indicating an excellent model performance. Considering the five-class petroleum potential, the proposed approach outperforms the spatial models used in the previous studies. In addition, comparing the results of the FE and OFE indicated that the optimization of the weights by the ABC algorithm has improved accuracy by approximately 15%, namely, a relatively higher success rate and lower risk in petroleum exploration.


2006 ◽  
Vol 10 (3) ◽  
pp. 239-260 ◽  
Author(s):  
Yan Huang ◽  
Jian Pei ◽  
Hui Xiong

2016 ◽  
Vol 83 ◽  
pp. 1262-1267 ◽  
Author(s):  
Leonardo Feltrin ◽  
João Gabriel Motta ◽  
Feras Al-Obeidat ◽  
Farhi Marir ◽  
Martina Bertelli

2020 ◽  
Vol 6 (1) ◽  
pp. 86-93
Author(s):  
R. Ivakin ◽  
Y. Ivakin ◽  
S. Potapichev

Geochronological tracking is an effective information technology for digital cartographic spatial data sets processing. It is widely known in retrospective patterns research about geographic relocation of figures, or any other units for a given time interval. Software component of geochronological tracking is becoming one the most popular GIS-integrated applications. The article presents the basic provisions for the algorithmization of the geochronological tracking procedure for statistical testing of retrospective studies hypotheses. We can observe the results of solving this optimization problem in a general form and in a number of the most typical variants. The obtained results of solving the optimization problem are interpreted in terms of the retrospective studies subject area. There are shown the ways of further practical application of the optimized algorithm in the tasks of modern logistics, data mining and formalized knowledge.


Sign in / Sign up

Export Citation Format

Share Document