Some Strong and Weak Limit Theorems for Weighted Sums of i.i.d. Banach Space Valued Random Elements with Slowly Varying Weights

2004 ◽  
Vol 22 (4) ◽  
pp. 1111-1120
Author(s):  
Andrew Rosalsky ◽  
Robert L. Taylor
Stochastics ◽  
2021 ◽  
pp. 1-19
Author(s):  
Pingyan Chen ◽  
Manuel Ordóñez Cabrera ◽  
Andrew Rosalsky ◽  
Andrei Volodin

2002 ◽  
Vol 47 (3) ◽  
pp. 533-547 ◽  
Author(s):  
Tien-Chung Hu ◽  
Tien-Chung Hu ◽  
Deli Li ◽  
Deli Li ◽  
Andrew Rosalsky ◽  
...  

2020 ◽  
Vol 22 (4) ◽  
pp. 415-421
Author(s):  
Tran Loc Hung ◽  
Phan Tri Kien ◽  
Nguyen Tan Nhut

The negative-binomial sum is an extension of a geometric sum. It has been arisen from the necessity to resolve practical problems in telecommunications, network analysis, stochastic finance and insurance mathematics, etc. Up to the present, the topics related to negative-binomial sums like asymptotic distributions and rates of convergence have been investigated by many mathematicians. However, in a lot of various situations, the results concerned the rates of convergence for negative-binomial sums are still restrictive. The main purpose of this paper is to establish some weak limit theorems for negative-binomial sums of independent, identically distributed (i.i.d.) random variables via Gnedenko's Transfer Theorem originated by Gnedenko and Fahim (1969). Using Zolotarev's probability metric, the rate of convergence in weak limit theorems for negativebinomial sum are established. The received results are the rates of convergence in weak limit theorem for partial sum of i.i.d random variables related to symmetric stable distribution (Theorem 1), and asymptotic distribution together with the convergence rates for negative-binomial sums of i.i.d. random variables concerning to symmetric Linnik laws and Generalized Linnik distribution (Theorem 2 and Theorem 3). Based on the results of this paper, the analogous results for geometric sums of i.i.d. random variables will be concluded as direct consequences. However, the article has just been solved for the case of 1 <a < 2; it is quite hard to estimate in the case of a 2 (0;1) via the Zolotarev's probability metric. Mathematics Subject Classification 2010: 60G50; 60F05; 60E07.


1979 ◽  
Vol 2 (2) ◽  
pp. 309-323
Author(s):  
W. J. Padgett ◽  
R. L. Taylor

Let{Xk}be independent random variables withEXk=0for allkand let{ank:n≥1, k≥1}be an array of real numbers. In this paper the almost sure convergence ofSn=∑k=1nankXk,n=1,2,…, to a constant is studied under various conditions on the weights{ank}and on the random variables{Xk}using martingale theory. In addition, the results are extended to weighted sums of random elements in Banach spaces which have Schauder bases. This extension provides a convergence theorem that applies to stochastic processes which may be considered as random elements in function spaces.


Sign in / Sign up

Export Citation Format

Share Document