Testing the Gamma‐Ray Burst Blast‐Wave Model: A Primer

2000 ◽  
Vol 127 (2) ◽  
pp. 283-285 ◽  
Author(s):  
A. Crider ◽  
E. P. Liang
2012 ◽  
Vol 747 (2) ◽  
pp. L30 ◽  
Author(s):  
Hendrik J. van Eerten ◽  
Andrew I. MacFadyen

2007 ◽  
Vol 661 (2) ◽  
pp. 787-800 ◽  
Author(s):  
R. L. C. Starling ◽  
R. A. M. J. Wijers ◽  
K. Wiersema ◽  
E. Rol ◽  
P. A. Curran ◽  
...  

1994 ◽  
Vol 432 ◽  
pp. 181 ◽  
Author(s):  
P. Meszaros ◽  
M. J. Rees ◽  
H. Papathanassiou

2010 ◽  
Vol 403 (1) ◽  
pp. 300-316 ◽  
Author(s):  
H. J. van Eerten ◽  
K. Leventis ◽  
Z. Meliani ◽  
R. A. M. J. Wijers ◽  
R. Keppens
Keyword(s):  

2008 ◽  
Vol 672 (1) ◽  
pp. 433-442 ◽  
Author(s):  
R. L. C. Starling ◽  
A. J. van der Horst ◽  
E. Rol ◽  
R. A. M. J. Wijers ◽  
C. Kouveliotou ◽  
...  
Keyword(s):  

Author(s):  
Tsvi Piran ◽  
Yi-Zhong Fan

Afterglow observations in the pre-Swift era confirmed to a large extend the relativistic blast wave model for gamma-ray bursts (GRBs). Together with the observations of properties of host galaxies and the association with (type Ic) SNe, this has led to the generally accepted collapsar origin of long GRBs. However, most of the afterglow data was collected hours after the burst. The X-ray telescope and the UV/optical telescope onboard Swift are able to slew to the direction of a burst in real time and record the early broadband afterglow light curves. These observations, and in particular the X-ray observations, resulted in many surprises. While we have anticipated a smooth transition from the prompt emission to the afterglow, many observed that early light curves are drastically different. We review here how these observations are changing our understanding of GRBs.


Sign in / Sign up

Export Citation Format

Share Document