scholarly journals Prolonged Suppression of Human Immunodeficiency Virus Type 1 RNA during Dual Nucleoside Reverse‐Transcriptase–Inhibitor Therapy in Clinical Practice

2000 ◽  
Vol 31 (4) ◽  
pp. 1095-1097 ◽  
Author(s):  
Craig J. Hoesley ◽  
Michael S. Saag ◽  
Ashlee Chatham ◽  
J. Michael Kilby
2010 ◽  
Vol 55 (1) ◽  
pp. 42-49 ◽  
Author(s):  
Yasuhiro Koh ◽  
Hillel Haim ◽  
Alan Engelman

ABSTRACTPharmacokinetic and pharmacodynamic considerations significantly impact infectious disease treatment options. One aspect of pharmacodynamics is the postantibiotic effect, classically defined as delayed bacterial growth after antibiotic removal. The same principle can apply to antiviral drugs. For example, significant delays in human immunodeficiency virus type 1 (HIV-1) replication can be observed after nucleoside/nucleotide reverse transcriptase inhibitor (N/NtRTI) removal from culture medium, because these prodrugs must be anabolized into active, phosphorylated forms once internalized into cells. A relatively new class of anti-HIV-1 drugs is the integrase strand transfer inhibitors (INSTIs), and the INSTIs raltegravir (RAL) and elvitegravir (EVG) were tested here alongside positive N/NtRTI controls tenofovir disoproxil fumarate (TDF) and azidothymidine (AZT), as well as the nonnucleoside reverse transcriptase inhibitor negative control nevirapine (NVP), to assess potential postantiviral effects. Transformed and primary CD4-positive cells pretreated with INSTIs significantly resisted subsequent challenge by HIV-1, revealing the following hierarchy of persistent intracellular drug strength: TDF > EVG ∼ AZT > RAL > NVP. A modified time-of-addition assay was moreover developed to assess residual drug activity levels. Approximately 0.8% of RAL and 2% of initial EVG and TDF 1-h pulse drug levels persisted during the acute phase of HIV-1 infection. EVG furthermore displayed significant virucidal activity. Although there is no reason to suspect obligate intracellular modification, this study nevertheless defines significant intracellular persistence of prototype INSTIs. Ongoing second-generation formulations should therefore consider the potential for significant postantiviral effects among this drug class. Combined intracellular persistence and virucidal activities suggest potential pre-exposure prophylaxis applications for EVG.


2002 ◽  
Vol 46 (11) ◽  
pp. 3613-3616 ◽  
Author(s):  
Fatih M. Uckun ◽  
Sharon Pendergrass ◽  
T. K. Venkatachalam ◽  
Sanjive Qazi ◽  
Douglas Richman

ABSTRACT We report the antiretroviral activity of stavudine-5′-(p-bromophenyl methoxyalaninyl phosphate) (stampidine [STAMP]), a novel aryl phosphate derivative of stavudine, against primary clinical human immunodeficiency virus type 1 (HIV-1) isolates. STAMP inhibited each one of nine clinical HIV-1 isolates of non-B envelope subtype and 20 genotypically and phenotypically nucleoside analog reverse transcriptase inhibitor-resistant HIV-1 isolates at subnanomolar to low-nanomolar concentrations.


Sign in / Sign up

Export Citation Format

Share Document