On the possibility of creating new asymptotically stable periodic orbits in continuous time dynamical systems by small feedback control

Nonlinearity ◽  
2003 ◽  
Vol 16 (5) ◽  
pp. 1853-1859 ◽  
Author(s):  
Xiao-Song Yang ◽  
Suochun Zhang
2007 ◽  
Vol 14 (5) ◽  
pp. 615-620 ◽  
Author(s):  
Y. Saiki

Abstract. An infinite number of unstable periodic orbits (UPOs) are embedded in a chaotic system which models some complex phenomenon. Several algorithms which extract UPOs numerically from continuous-time chaotic systems have been proposed. In this article the damped Newton-Raphson-Mees algorithm is reviewed, and some important techniques and remarks concerning the practical numerical computations are exemplified by employing the Lorenz system.


2017 ◽  
Vol 27 (12) ◽  
pp. 1730042 ◽  
Author(s):  
David J. W. Simpson

As the parameters of a piecewise-smooth system of ODEs are varied, a periodic orbit undergoes a bifurcation when it collides with a surface where the system is discontinuous. Under certain conditions this is a grazing-sliding bifurcation. Near grazing-sliding bifurcations, structurally stable dynamics are captured by piecewise-linear continuous maps. Recently it was shown that maps of this class can have infinitely many asymptotically stable periodic solutions of a simple type. Here this result is used to show that at a grazing-sliding bifurcation an asymptotically stable periodic orbit can bifurcate into infinitely many asymptotically stable periodic orbits. For an abstract ODE system the periodic orbits are continued numerically revealing subsequent bifurcations at which they are destroyed.


2021 ◽  
Vol 26 (3) ◽  
pp. 419-439
Author(s):  
Roberta Hansen ◽  
Graciela A. González

Based on existing feedback control methods such as OGY and Pyragas, alternative new schemes are proposed for stabilization of unstable periodic orbits of chaotic and hyperchaotic dynamical systems by suitable modulation of a control parameter. Their performances are improved with respect to: (i) robustness, (ii) rate of convergences, (iii) reduction of waiting time, (iv) reduction of noise sensitivity. These features are analytically investigated, the achievements are rigorously proved and supported by numerical simulations. The proposed methods result successful for stabilizing unstable periodic orbits in some classical discrete maps like 1-D logistic and standard 2-D Hénon, but also in the hyperchaotic generalized n-D Hénon-like maps.


Author(s):  
Björn Schenke ◽  
Viktor Avrutin ◽  
Michael Schanz

In this work, we investigate a piecewise-linear discontinuous scalar map defined on three partitions. This map is specifically constructed in such a way that it shows a recently discovered bifurcation scenario in its pure form. Owing to its structure on the one hand and the similarities to the nested period-adding scenario on the other hand, we denoted the new bifurcation scenario as nested period-incrementing bifurcation scenario. The new bifurcation scenario occurs in several physical and electronical systems but usually not isolated, which makes the description complicated. By isolating the scenario and using a suitable symbolic description for the asymptotically stable periodic orbits, we derive a set of rules in the space of symbolic sequences that explain the structure of the stable periodic domain in the parameter space entirely. Hence, the presented work is a necessary step for the understanding of the more complicated bifurcation scenarios mentioned above.


Sign in / Sign up

Export Citation Format

Share Document